Linear Algebra Lecture 2

Linear Dependence

Let v1,v2,vMRN\vec{v_1},\vec{v_2}\ldots,\vec{v_M}\in \R^N

Let the set {vecv1,v2,,vM}\left\{ \\vec{v_1},\vec{v_2},\ldots, \vec{v_M}\right\} is linearly dependent if there are scalars λ1,λ2,,λM\lambda_1,\lambda_2,\ldots,\lambda_M not all of which are zero such that:
λ1v1+λ2v2+λMvM=0\lambda_1\vec{v_1} + \lambda_2\vec{v_2} + \ldots \lambda_M\vec{v_M} = 0

The set {v1,v2,,vM}\left\{ \vec{v_1},\vec{v_2},\ldots, \vec{v_M}\right\} is linearly independent if it is not linearly dependent

However for a basis set of vectors we want more than them to just be linearly independent, we want all vectors in the set to be orthogonal to each other.

Demonstrating linear dependence/ independence

Given a set of linear simultaneous equations you can show their linear dependence/ independence via the process of Gaussian Elimination.

For a matrix V\bf V with columns v1,,vM\vec{v_1},\ldots,\vec{v_M}, if V\bf V can be reduced to a diagonal matrix with non-zero elements then the set of equations are linearly independent, otherwise they are linearly dependent.

Interpretation

The set {v1,v2,,vM}\left\{ \vec{v_1},\vec{v_2},\ldots,\vec{v_M}\right\} is linearly dependent if at least one member of the set can be written as a linear combination of the others

Vector Set Bases

A basis for a vector space is a coordinate system. In R3\R^3 we in general use the x,y,zx,y,z coordinate system, Any vector:

v=[vxvyvz]R3\vec{v} = \begin{bmatrix} v_x \\ v_y \\ v_z \end{bmatrix} \in \R^3

can be written:

v=vx×ux+vy×uy+vz×uz\vec{v} = v_x \times \vec{u_x} + v_y \times \vec{u_y} + v_z \times \vec{u_z}

where ux,uy\vec{u_x},\vec{u_y} and uz\vec{u_z} are unit vectors

ux=[100],uy=[010],uz=[001]\vec{u_x} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} , \vec{u_y} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} , \vec{u_z} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}

Here ux,uy\vec{u_x},\vec{u_y} and uz\vec{u_z} are unit vectors as:

ux=uv=uz=1\|\vec{u_x}\| = \|\vec{u_v}\| = \|\vec{u_z}\| = 1

and are orthogonal as:

uxuy=uxuz=uyuz=0\vec{u_x} \cdot \vec{u_y} = \vec{u_x} \cdot \vec{u_z} = \vec{u_y} \cdot \vec{u_z} = 0

Any set of 3 orthogonal unit vector can be used as a coordinate system in R3\R^3, such as set is called a basis for R3\R^3 or more strictly an orthonormal basis

Definition of a basis of RN\R^N

A basis for the vector space RN\R^N is the set of vectors u1,u2,,uN\vec u_1, \vec u_2, \ldots, \vec u_N s.t. they are all unit vectors and mutually orthogonal.

Properties of Bases

Any basis E={e1,e2,,eN}E = \{\vec{e_1},\vec{e_2},\ldots,\vec{e_N}\} for RN\R^N is linearly independent.

To see this property, first assume a set is linearly independent. If this is the case then [λ1,λ2,,λN]\exists[ \lambda_1,\lambda_2,\ldots,\lambda_N] s.t.

λ1e1+λ2e2++λNeN=0\lambda_1\vec{e_1} + \lambda_2\vec{e_2} + \ldots + \lambda_N\vec{e_N} = 0

where not all λn\lambda_ns are 0. Assume λ10\lambda_1 \neq 0 as therefore:

e1=ϕ2e2+ϕ3e3++ϕNeN,(ϕn=λnλ1)\vec{e_1} = \phi_2\vec{e_2}+\phi_3 \vec{e_3} + \ldots + \phi_N \vec{e_N}, \left( \phi_n = \frac{\lambda_n}{\lambda_1} \right)

and from that we can show:

0=ene1=ϕ2ene2++ϕNeneN=ϕn0 = \vec{e_n}\cdot \vec{e_1} = \phi_2 \vec{e_n}\cdot \vec{e_2} + \ldots + \phi_N \vec{e_n} \cdot \vec{e_N} = \phi_n

Therefore, 0=ϕn0 = \phi_n and so λn=0\lambda_n = 0. Since this can be repeated [n1,λn=0]\forall [n \neq 1, \lambda_n =0] it must be the case that λ1=0\lambda_1 = 0


For any basis for RN\R^N Then any vector vRN\vec{v} \in \R^N can be written uniquely as a linear sum of basis vectors

v=(ve1)e1+(v2e2)e2++(veN)eN\vec{v} = (\vec{v}\cdot \vec{e_1})\vec{e_1} + (\vec{v_2}\cdot\vec{e_2})\vec{e_2} + \ldots + (\vec{v} \cdot \vec{e_N})\vec{e_N}

Uniqueness means that if:

v=λ1e1+λ2e2++λNeN\vec{v} = \lambda_1\vec{e_1} + \lambda_2\vec{e_2} + \ldots + \lambda_N\vec{e_N}

and

v=ϕ1e1+ϕ2e2++ϕNeN\vec{v} = \phi_1\vec{e_1} + \phi_2\vec{e_2} + \ldots + \phi_N\vec{e_N}

then

λn=ϕn=(ven),n{1,,N}\lambda_n = \phi_n = (\vec{v}\cdot \vec{e_n}), \forall n \in \{1,\ldots,N\}