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Introduction

Noisy Data and Overfitting

As we saw at the end of the last lecture, the addition of noise to
a dataset can have significant effects on the result of a regression
analysis. This is particularly so when the model that we are using
is very expressive and can model quite complicated patterns. In
this lecture, we will study this in more detail, and this will lead
us to both a set of practical methods for choosing a model, and an
understanding of the theoretical limits of a learning algorithm.

We will develop these ideas in the context of a more complex
example than a “simple” straight line fit. This will allow us to both
explore the power that linear methods can have, and also to see
more clearly how changing a model can affect the outcome of a
regression analysis. The function we will study is a simple one in
many ways, but is rather more complex in others:

y(x) = sin(2πx) (1)

One can of course perform a very simple linear fit on this by choos-
ing f (w, x) = w0 sin(2πx), but the more general case f (w, x) =

w0 sin(w1x) cannot be solved directly via linear methods. However,
we can acheive a good approximate solution using a polynomial
basis. That is, we seek to find coefficients w such that

sin(2πx) =
M−1

∑
i=0

wixi. (2)

Should we expect to be able to do this? Yes – it is a well known
mathematical result that sin(ax) = ax − a3x3

3! + a5x5

5! −
a7x7

7! + · · · (a
Maclaurin series), and the coefficients of this for a = 2π are w ≈
(0, 6.28,−41.34, 0, 81.61, 0,−76.7, 0, 42.1, . . . ). We will perform two
experiments. First, we will attempt to fit a polynomial of different
degrees to y = sin(2πx). Then, we will investigate the effect of a
little additive noise by fitting a polynomial to y = sin(2πx) + ε,
where ε will be drawn from N (0, 0.25), a normal distribution with
mean 0 and variance 0.25.

In Figure 1, we see the results of different orders M of fit to N =

10 data points sampled from y = sin(2πx) in the range x ∈ [0, 5].
It is common to measure the quality of the fit by plotting the root-

mean-square error, R =
√

1
N ∑i r2

i , which is shown in Figure 2.
Note that this is related to the least-square loss function by R =√
LLSE/N From this curve, we see that the error converges rapidly

towards zero, with little change after M = 7 which visually looks
to be a good model of the data, and the estimates of the values of y
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for values of x that were not sampled in the original data are good
(note how well matched the black (true) and red (estimated) curves
match). Notice the plateaus in the RMS plot which reflect the even
terms with a coefficient of zero in the Taylor series.
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Figure 1: Fitting y = sin(2πx) with
polynomial fits of increasing degree
M. The blue line represents the true
function; the black points are the
sampled points (xi , yi); the red line is
the best-fit polynomial of that order.
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Figure 2: RMS Error of polynomial fits
of different degree to y = sin(2πx).

It is also instructive to study the coefficients that we obtain from
the fit to make sure they are consistent with the Maclaurin series.
These are shown in Table 1. We should not expect these to match
our expectations exactly because we have only modelled the range
x ∈ [0, 5] and should have no expectation that our result will hold
outside this. We notice that the correspondence between the terms
and their true values gradually improves as we add high order
terms in to the model until for M = 9, the difference is very small
for the first few terms.

Let us now consider the effect of adding some noise to the sam-
pled data. This is much more realistic in most situations where
the data has been obtained through some measurement process.
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M w0 w1 w2 w3 w4 w5 w6 w7 w8 w9

0 0.00

1 0.00 -0.29

2 0.00 -0.29 -0.00

3 0.00 -0.07 -0.00 -0.31

4 0.00 -0.07 0.00 -0.31 -0.00

5 0.00 3.85 -0.00 -16.51 0.00 12.69

6 0.00 3.85 -0.00 -16.51 0.00 12.69 -0.00

7 -0.00 6.00 0.00 -35.84 -0.00 54.04 0.00 -24.20

8 -0.00 6.00 0.00 -35.84 -0.00 54.04 0.00 -24.20 -0.00

9 -0.00 6.28 0.00 -41.12 -0.00 78.61 0.00 -63.77 -0.00 20.00

True 0 6.28 0 -41.34 0 81.61 0 -76.7 0 42.1

Table 1: Coefficients of polynomial fits
of different degree to y = sin(2πx).

We generate ten uniformly spaced data points in x ∈ [0, 5] using
y = sin(2πx) + ε where ε ∼ N (0, 0.25). In Figure 3 we show
different degrees of polynomial fit to this data.

For low order fits, the fitted curves look very similar to the noise-
free case and M = 5 gives a result that is beginning to resemble
a sin curve. However, at M = 9 something odd happens. The
fit appears to get much worse with large divergences from the
ground truth. Yet the RMS error, shown in Figure 4, shows the error
between the model and the data continuing to decrease. What is
going on here?
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Figure 3: Fitting y = sin(2πx) with
polynomial fits of increasing degree
M to data with added noise. The blue
line represents the true function; the
black points are the sampled points
(xi , yi); the red line is the best-fit
polynomial of that order.
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Figure 4: RMS Error of polynomial fits
of different degree to y = sin(2πx).

To understand this, we should think about what we are trying to
achieve. We have N data points from which we are trying to derive
the values of M free parameters. In the case M < N we have fewer
free parameters than we have data points, and the solution that
minimises the least-squares loss function, but does not necessarily
pass through any of them, as we see for small values of M. In other
words, there are no parameters that we can choose for a straight-
line that will exactly fit this data. The case M = 9, however, has
ten unknowns, and ten free parameters. It is therefore possible (as-
suming the basis is suitably expressive) to choose these parameters
so that the function passes exactly through all of the data points.
In the noise-free case, we saw that this didn’t matter – the data
points all lie exactly on the curve y = sin(2πx), but when we add
a little noise to the data, we introduce high-frequency fluctuations
into the data that cannot be represented using low-order fits, but
can be matched exactly by high-order fits. At M = 9 we have ten
free parameters and so we can engineer these to construct a curve
that exactly passes through all of the data points. For a more famil-
iar examples, it is always possible to fit a straight line to two data
points.

The price of this "perfect fit" is that the curve deviates wildly
from the ground truth between the sampled points. In order to ex-
actly fit the high-frequency noise components, higher order terms
tend to have large amplitudes (Table 2) so that the high order poly-
nomial terms can generate the high-frequency fluctuations needed,
but cancel each other out at the data points so that the fit is ex-
act. This leads to the large deviations we see between the sampled
points. This is know as overfitting and is a very common problem
when working with noisy datasets and complex models. A model
that overfits its training data tends to be unable to generalise to
unseen data, and this is very clear when looking at the black (true)
and red (estimate) curves: they intersect at the data points, and
then diverge at values of x that were not in the data.

M w0 w1 w2 w3 w4 w5 w6 w7 w8 w9

9 -0.66 10.98 25.62 -117.80 -143.29 405.10 246.74 -561.32 -127.91 263.129

Table 2: Coefficients of a high-order
polynomial fit to noisy data show
characteristic large values of high-
order coefficients.

We can see one of the consequences of this if we repeat this for a
different sampling of noise, as shown in Figure 5

This is instructive because it shows us two important things:

1. Low-order models tend to be reasonably robust to noise, but do
not fit the data well.

2. High-order model fit the data very well, but can be very sensi-
tive to noise, giving different results for different noise realisa-
tions.

These observations imply that there is some trade-off between
models that are robust, and models that are accurate. Why is this



lecture 2: model bias and variance 6

1 0 1
x

1.0

0.5

0.0

0.5

1.0

y

M=0

1 0 1
x

1.0

0.5

0.0

0.5

1.0
y

M=1

1 0 1
x

1.0

0.5

0.0

0.5

1.0

y

M=3

1 0 1
x

1.0

0.5

0.0

0.5

1.0

y

M=5

1 0 1
x

1.0

0.5

0.0

0.5

1.0

y

M=7

1 0 1
x

2

0

2

4

y

M=9

Figure 5: Fitting y = sin(2πx) with
polynomial fits of increasing degree M
to data with a different realisation of
added noise. The blue line represents
the true function; the black points are
the sampled points (xi , yi); the red line
is the best-fit polynomial of that order.
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so? To understand, we turn to one of the most important results in
machine learning: the bias-variance decomposition.

The Bias-Variance Decomposition

Let us ask a very simple question (using a simplified notation for
convenience):given data y generated by an underlying function
h(x) + ε, and an estimated model f (x), what is the expected value
(i.e. the average) of the least-squares loss, L = (y− f )2? Since the
data is a random variable drawn from some probability distribu-
tion, both the loss function and the predictions of the estimated
model must also be random variables and will therefore have some
distribution of values with an expected value. Writing f (x) = f and
h(x) = h for simplicity, the expected loss is given by

E[L] = E[(y− f )2] (3)

= E[y2] + E[ f 2]− 2E[y f ] (4)

We will rewrite this using the definition of the variance of a random
variable:

var[X] = E[X2]− (E[X])2, (5)

and a property of two independent variables

E[XY] = E[X]E[Y] (6)

The expected loss then becomes

E[L] = var[y] + (E[y])2 + var[ f ] + (E[ f ])2 − 2E[y]E[ f ] (7)

Now we can apply what we know about the problem. Since y =

h(x) + ε, then under the assumption that E[ε] = 0 and var[ε] = σ2,
then E[y] = h and var[y] = σ2. The expected loss becomes

E[L] = σ2 + h2 + var[ f ] + (E[ f ])2 − 2hE[ f ] (8)

= σ2 + var[ f ] + h2 + (E[ f ])2 − 2hE[ f ] (9)

= σ2 + var[ f ]︸ ︷︷ ︸
variance

+ (h−E[ f ])2︸ ︷︷ ︸
bias

(10)

How can we interpret this result? First, we notice that the data
is no longer explicitly present in this expression, only a measure of
its variance σ2. All dependence on the specific sample, y, of the data
has been absorbed into the other terms. In particular, the variance
of f is a consequence of the variance in the data: if the data has no
noise, we will always learn the same model, but different samples
will lead to different models. Therefore, the term var f represents
the degree to which the estimated model is sensitive to the choice
of data.

The third term in the expression, (h(x)−E[ f (x)])2, is the square-
difference between the true underlying model h and the "average"
estimated model f . This term represents the ability of the estimated
model to accurately represent the true model: it is the bias of the
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estimate. For examples, fitting a linear function f (x) = mx ∗ c to
h(x) = sin(2πx) has a high bias, because it cannot accurately match
the true underlying function.

Minimising the expected loss is achieved by choosing a model
that simultaneously minimises the dependence on the data sam-
pling, and the ability of the model to represent the data. This result
demonstrates that these two desires conflict with each other. A very
complex model will have a low bias, because it can represent the
data very accurately, but a high variance, because a different sam-
pling of the data will give a completely different model. A very
simple model will conversely have a low variance but a high bias.
The need to simultaneously minimise both terms, and the trade-offs
that are necessary is at the core of modern learning theory.

The implication of this results is that the choice of model for
our estimator f (x) matters a lot. If we know the data generating
function h(x), then we can make the principled choice f = h. If,
however, we do not know h then we have to determine the best
model empirically. We will now consider some techniques for doing
this.

Reading

Sections 1.1 and 3.2 of Bishop, Pattern Recognition and Machine
Learning.
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