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Selecting and Evaluating Models

So far, we have seen how, given a set of data and a model (in our
case, a linear sum of polynomials), we can compute the model
coefficients such that the model matches the data. We have also
seen how the choice of model can matter, and that models will
typically have a low bias (fit the data well) or a low variance (robust
to different data), but not both. For most problems we will have to
choose which model is most appropriate, requiring us to formally
compare and evaluate different models. How can we do this?

When we perform a regression task there are typically two cases
of particular interest:

1. The underlying model is known and we wish to find its parame-
ters.

2. The underlying model is unknown and we wish to learn to
make predictions on unseen data.

An example of the first situation is the trajectory of a moving object
that is known to be moving according to the well-known equa-
tion's = so + ut + sat?. If we acquire a dataset D = {(t;,5;)} N,
of measurements of position s at time ¢ and then fit a quadratic
model y(t) = wy + w;t + wyt? then we can deduce the initial po-
sition sy = wyp, the initial velocity u = w;, and the acceleration

a = wy. In this case we use our prior knowledge of the problem
to select the appropriate model. Notice that in this case we do not
risk overfitting because the model is chosen to model the under-
lying trend and does not have the capacity to model noise in the
measurements.

The second situation is much more interesting and difficult.
When we have no first-principles way of determining what the
model should be, we have to turn to empirical means, by which we
mean "experiments".

In the small experiments we have done so far, we have treated
our dataset as a single object and looked to see how well out model
can describe it. We have also argued, on intuitive grounds, that
when the model is too complex, it can overfit the data. We will now
investigate this claim. There are two situation in which we will be
interested:

¢ Cases where we have a large quantity of data

* (Cases where we have a small quantity of data
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The Large Data Regime: Train—Validate—Test Split

Consider a situation in which we have a large dataset D that is far
larger than is needed to estimate the underlying model. The basic
idea behind a holdout scheme is that we use some of the data to
train the model, some of the data to evaluate whether that model
is any good, and some of the data to test what we think is the best
model. Let us define a partitioning of the data as follows:

* A training set 7, randomly sampled from D.
* An validation set V, randomly sampled from D — 7.
e A test, or evaluationset £ =D — T — V.

Our starting position is that we have a set of models {/\/li}llle
that we wish to evaluate (using a loss function £) to determine
which has the most predictive ability. We need to distinguish be-
tween two distinct aspects of our models: their learnable param-
eters w, and their hyperparameters, which are those features of the
model that we do not learn directly from the data: the choice of
basis, the regularisation scheme etc. The basic idea is then that we
use the training set to learn the model parameters, and then we
use the validation set to select the choice of hyperparameters that
best allows the model learned on 7 to generalise to V), in other
words, for model selection. Finally, we perform an evaluation of the
best model on £ to assess how well the model performs on unseen
data, which is the ultimate test of its ability to generalise, and al-
lows us to guard against overfitting of the hyperparameters to the
validation set. This process is described by Algorithm 1.

Data: Set of models {M;};

Data: Dataset D split into training (7), validation (V), and
test/evaluation (&) sets.

Result: Identification of model M* with best predictive power.

for each model M; do
Train M; on T;

Compute model loss L7 on training set 7 ;
Compute model loss £y, on evaluation set V;
end
Select model M * with best overall performance on training and
validation sets.;
Compute loss on test set £ to determine final model

performance;
Algorithm 1: Model Selection and Evalulation using a Train—

Evaluate-Test Procedure.

There are some important features of this scheme that are worth
some consideration. Firstly, the dataset D must be large enough to
enable the split to be performed whilst ensuring that the training
set 7 is large enough to enable the model to learn its structure.
Secondly, the dataset partitioning must be carefully performed to
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make sure that each of the sub-groups (7, V, &) is representative
of the full dataset. For example, in our toy problem of data gener-
ated by y = sin(27x) + €, the partioning needs to be done such
that each subset contains sample from across the data’s domain x.
This is particularly important to bear in mind when working with
data that has a natural order to it. Similarly, we would also need
to be careful to make sure that the full range of y values is repre-
sented and the data subsets are not just sampling (for example) the
positive values of y. This is very difficult to do when working with
small datasets and so an alternative schemes is necessary.

Let us implement this on our example. We generate twenty
data points and split them into a training set 7 of ten points, a
validation set V of five points, and a test set £ of 5 points. Although
these are quite small sets, for this simple example, this is sufficient.

Figure 1: Evaluation of polynomial

M=3 M=4 regression to y = sin(27x) using a
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Visually, we see from the fits, that, as we saw before, the low-
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order polynomials are not able to explain the data very well. At
degree M = 5 we see that this changes visually. With reference to
the error shown in Figure 2, we see that the training error decreases
significant at this point, and the validation error also shows a sig-
nificant decrease. It is interesting to see that the validation error
tracks the training error quite closely for low-degree polynomials.
This is to be expected of a model where the training and validation
datasets are representative of the full dataset. If the validation error
does not track the training error, this is an indication that at least
one of the two sets is not representative of the full dataset.

At very high order fits, (remembering that we are training on ten
points), we see that whislt the training error continues to improve,
the validation error suddenly gets dramatically worse. This is the
characteristic sign of overfitting: the model is able to fit the training
data very well, but has learned both the trend in the data and the
noise distribution of those datapoints: it has effectively memorised
the training data and is unable to generalise its results to the valida-
tion set. On this data, fits of order M = 5 or M = 6 seem like they

ought to be optimal, and a useful maxim to apply here is Occam’s 1007
Razor which roughly states that one should choose the simplest hy- 075 1
pothesis (model) that is supported by the data, i.e we should choose e
M = 5. On the test set, this gives an RMS error of 0.68 which is w 9201
comparable with the errors on the validation set and suggests that z 0.25 -
we have learned the underlying trend in the data reasonably well.
For the data we have considered here, a full training-validation- 0.00 1, :
testing split seems to work, and is consistent with our intuitions. 0 5
However, this is a very small dataset and an alternative technique — Degree of fit

cross-validation — would be more appropriate. . . o
Figure 2: Training and validation

errors as a function of polynomial
The Small Data Regime: Cross-Validation degree for the data shown in Figure 1.

If we only have a small number of data points (ten, in our toy prob-
lem), it is clear that a three-way split of the training data is prob-
lematic. Any significant reduction in the number of data points
used to train the model will inevitably lead to difficulties: loss of
the trend in the data, overfitting, loss of generalisation etc. In this
circumstance, a more data-efficient method is necessary: cross-
validation.

In a cross-validation scheme, the dataset is typically divided
into a test/evaluation set £, and a cross-validation set C. The test
set serves the same role as it did before: a fraction of the data is
held out in order to evaluate the best model on unseen data. The
cross-validation set is used somewhat differently. It is used to both
train and validate the model and therefore to both learn the model
parameters and the hyperparameters; that is, both training and
validation data is drawn from C. The way that this is done is by
splitting C into K folds. K — 1 of the folds are used to train the data,
and then the remaining fold is used as the validation set. This pro-
cess is repeated K times with each fold being used in turn as the
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Data: Set of models {M;};
Data: Dataset D split into cross-validation (V), and
test/evaluation (&) sets.
Data: Number of folds, K
Result: Identification of model M* with best predictive power.
Divide C into K folds {ck}f:1 such that C = U]Ile C
for each model M; do
fork=1— Kdo
Train M; on training set C — ¢y;
Compute model loss £ on training set C — cy;
Compute model loss £y on evaluation fold cy;
end
end
Select model M with best overall performance on training and
validation sets;
Compute loss on test set £ to determine final model

performance;
Algorithm 2: Model Selection and Evaluation using Cross-

Validation.

validation set. The best performing model over the K repeats, typ-
ically judged on the average performance over all of the split, is
selected as the final model which can then be evaluated against the
test set. Common approaches to cross validation are 10-fold cross-
validation (train on 90%, validate on 10%), and hold-one-out, which
is equivalent to N-fold cross validation, for N data points (train on
N — 1, validate on 1). This is a common strategy when the data is
very small indeed.

Let’s look at how to do this. Using the same set of data as we
studied in the previous example. The process runs as follows:

1. Divide the twenty data points into five “folds” of four data
points each — five-fold cross-validation, taking care to randomise
the order of the points before doing this.

2. For each model (in this case, polynomial order):

(a) For each fold:
i. Validation set < current fold

ii. Training set < all other folds combined

iii. Learn model weight from training set 31

iv. Evaluate model on validation set 5 5 |
(b) Compute mean training and validation errors across the E

folds Z 14
The

The results should not be compare directly to the full training- T T T T
00 25 50 75

lidation-test split. We note the followi ints.
validation-test split. We note the following points Degree of fit

¢ The training set sizes used in cross-validation can be larger that
Figure 3: Training and validation

errors as a function of polynomial
degree for the data shown in Figure 1
using five-fold cross-validation.

in a single split
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* The validation set is typically slightly smaller

¢ These results are averaged over all folds and this will remove
some fluctuations

¢ Similar conclusions can be drawn: models of order 5 perform
well on both the training and validation sets

* We are unlikely to overfit this problems — 16 data points, order
10 model.

Reading

Sections 1.3 of Bishop, Pattern Recognition and Machine Learning
gives empirical selection a cursory and cautious treatment.
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