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Bayesian View of Regression

So far, we have adopted quite an informal approach to regression:
we wrote down an error function (least-squares) that made some
sense from an intuitive viewpoint that seemed to make logical
sense, but we have no formal basis for claiming that the “least
squares fitting” method was a correct and valid way to approach
the regression problem. Studying the problem from a Bayesian
perspective will give us the formal rigour that we need in order to
justify the choices we have made.

Our starting point will be to construct a model of the underlying
data-generating process. We assume that each data point is the
result of some process that has a deterministic component, and
some associated sampling uncertainty.

y = f(x, w) + ε (1)

where ε ∼ N (0, σ2) is a normal distribution of variance σ2 such
that σ is a measure of the uncertainty in the sampling. That is,
when the value of the dependent variable y is sampled for some
value of the independent variable x, it will be drawn from a normal
distribution with mean f (x, w) and variance σ2. Under this model,
we can write the distribution of y as

p(y|x, w, σ2) = N (y| f (x, w), σ2) (2)

that is, it is normally distributed with mean f (x, w) and variance
σ2.

Now consider that we have a dataset D = {(xi, yi)}N
i=1 which

we will write as (x, y). We assume that the dependent variables yi

are sampled independently from normal distributions with the same
variance σ2. The independence of the sampling means that the joint
probability distributions over all data points can be written as the
product of the distributions for each point:

p(y|x, w, σ2) =
N

∏
i=1
N (yi| f (xi, w), σ2) (3)

This is known as the likelihood of y: it is the probability density
function of the dependent variables y conditioned on the set of pa-
rameters that describe the data generating function (ie. given some
set of parameters, what is the probability of the measurements?).

With the likelihood, we can now approach regression in a dif-
ferent way. Since the likelihood is a proper probability density
function, we can ask “what parameters w maximise it“? In other
words, what is the most likely set of measurements, and what are
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the parameters that gives rise to the most likely measurements?
This is known as maximum likelihood inference.

First, we substitute in the full form of the normal distribution
N (x|µ, σ2) = (2πσ2)−

1
2 exp(−(x− µ)2/(2σ2))

p(y|x, w, σ2) = (2πσ2)−
N
2

N

∏
i=1

exp(−(yi − f (xi, w))2/(2σ2)) (4)

We now take the logarithm of this to get rid of the exponential
terms. Since the logarithm is a monotonic function (it has no max-
ima or minima of its own), the maximum of the log-likelihood will
be at the same value of w as the maximum of the likelihood.

ln p(y|x, w, σ2) = ln(2πσ2)−
N
2 )+ ln

(
N

∏
i=1

exp(−(yi − f (xi, w))2/(2σ2))

)
(5)

where we have used ln ab = ln a + ln b. We now use the general-
isation of this, ln ∏i ai = ∑i ln ai, and the identity ln ab = b ln a to
obtain the following expression for the log-likelihood:

ln p(y|x, w, σ2) = −N
2

ln 2πσ2 − 1
2σ2

N

∑
i=1

(yi − f (xi, w))2 (6)

This has two terms. The first term (which is negative) is max-
imised by minimising the number of data points or the variance
in the measurement. This is intuitively obvious: more data and/or
more noise means less certainty. The second term is exactly the
familiar least-squares error term (negated). Maximising the log-
likelihood is therefore equivalent to minimising the least-squares
error.

We have written down an expression for the likelihood assum-
ing Gaussian noise on the data. We can now use this to perform
some rather more sophisticated types of regression. In particular, it
allows us to incorporate prior information about the problem using
Bayes Rule:

p(a|b) = p(b|a)p(a)/p(b) (7)

where p(a|b) is the posterior distribution of a given b, p(b|a) is the
likelihood of b given a and p(a) is the prior distribution of a.

Given the likelihood p(y|x, w, σ2), we can use Bayes’ rule to
compute the probability density function of the model weights:

p(w|x, y, σ2) =
p(y|x, w, σ2)× p(w)

P(y)
(8)

That is, the probability density function of the model weights
depends on the likelihood of the measurements conditioned on the
weight, multiplied by the prior distribution of the weights, and the
normalised by the distribution of the measurements. We will ignore
the normalising factor p(y) for simplicity and consider

p(w|x, y, σ2) ∝ p(y|x, w, σ2)× p(w) (9)
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The simplest case to consider is p(w) = c, a constant. In this case
we have that

p(w|x, y, σ2) ∝ p(y|x, w, σ2)× c (10)

∝ p(y|x, w, σ2) (11)

and the maximum likelihood solution of this is the same as be-
fore – it is the least-squares solution. This solution assumes that all
model weights - large or small - are equally likely.
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Figure 1: Fitting y = sin(2πx) with a
polynomial fit of degree M = 9 to data
with added noise..

Is this desireable? Sometime, but not necessarily so. One char-
acteristic of overfitting is that the model weights of the high-order
terms can be very large. We have seen this previously in our earlier
examples, reproduced in Figure 1 and Table 1. Our previous studies
have focussed on removing these high order terms from the basis
set, but could we control their contribution to the model fitting in a
different way?

M w0 w1 w2 w3 w4 w5 w6 w7 w8 w9

9 -0.66 10.98 25.62 -117.80 -143.29 405.10 246.74 -561.32 -127.91 263.129

Table 1: Coefficients of a high-order
polynomial fit to noisy data show
characteristic large values of high-
order coefficients.

Let us consider another form of prior distribution for the model
weights. We assume that they are drawn from a normal distribu-
tion with zero mean, and, for convenience, variance σ2 = 1/2λ.
We ignore normalisation constants for simplicity as they will all
be absorbed into a single constant of proportionality. The distri-
bution is condition on λ and assuming each of the components is
independent, the joint distribution can be written

p(w|λ) ∝
M

∏
i=1

exp(−λw2
i ) (12)

∝ exp(−λ ∑
i

w2
i ) (13)

∝ exp(−λwTw) (14)

Using Bayes Theorem we have

p(w|x, y, σ2, λ) ∝ p(y|x, w, σ2)× p(w|λ) (15)

and noting that ln ab = ln a + ln b, we follow the same process as
before and find that this is maximised by the minimum of

L =
N

∑
i=1

(yi − f (xi, w))2 + λwTw. (16)

That is, a Gaussian prior with zero mean and variance σ2 = 1/2λ

is equivalent to adding a “penalty” term to the least-squares error
function. This penalty is proportional to the square of the length of
the weight vector and so when we try to minimise L it will prefer-
entially prefer solutions with small values for its components. This
is consistent with the Bayesian prior, which is normally distributed
around zero. The most likely values of the weights are those near
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to zero, and the least likely are those that are large. The parame-
ter λ controls the width of the Gaussian prior: large λ means low
variance and therefore a narrow distribution, and so the larger λ

is, the less likely the weights are to take large values. Because this
prior distribution results in the model coefficient being kept small,
it is known as a shrinkage method, and since the penalty term is
the L2 norm (ie the square length of the weight vector, this is often
referred to as L2 regularisation, or sometimes as Tikhonov regulari-
sation (although this is a more general class of methods).

L2 regularisation is very widely used in regression tasks. In the
next section of the module, we will study how to use it effectively

Reading

Sections 1.2.5 of Bishop, Pattern Recognition and Machine Learn-
ing.
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