Lecture 5: Regularisation
lain Styles
25 October 2019

Regularisation

Our approach to learning a function from data has been based
around trying to minimise the loss, or error, with which the model
is able to describe the data. As we have seen, it is inevitable that

a model of sufficient complexity will always be able to perfectly
match the data points supplied. This seems like it should be highly
desirable, but the consequence is that the model does not generalise
to data that was not in the training set used to learn the unknown
parameters: the model does not learn the underlying trend in noisy
data, but rather uses high-order terms in the basis set to fit both the
trend of the data and the noise.

We have recently formulated the regression problem from a
probabilistic viewpoint which naturally allows us, via Bayes rule,
to include information about our prior beliefs. We showed how
likelihood maximisation under the prior belief that all values of
the model parameters were equally likely led directly to the least-
squares approach that we have previously studied. We also showed
how a prior belief that the parameters are normally distributed led
to a modified least squares loss that included a term that penalised
large values of the model parameters — so-called regularisation. We
will now study regularised loss functions and their solution and
application in more detail.

In preceding sections, we formulated regularisation via a Bayesian
prior. This is theoretically very satisfying but perhaps lacks flexibil-
ity: not all constraints that we may wish to impose can be mapped
so easily onto a statistical prior. In this section we will draw on the
final result of that analysis — a modified least-squares loss func-
tion and consider more general regularisation terms that are not so
easily expressed in the probabilistic sense.

In general, the loss function for regularised problems is written

L(W) = Lerr(W) + AR(W) (1)

where Le; is a measure of the mismatch between the model pre-
diction and the data (such as the least-squares error), and R(w) is a
function of the parameter vector that imposes some penalty on so-
lutions that do not match our prior belief of what “valid” solutions
should look like, by increasing the value of the loss function for
these undesireable solutions. The choice of regularisation function
R depends on what type of behaviour we want to impose.

Let us think about how this might be used to prevent overfitting.
We saw previously that one of the characteristics of overfitted so-
lutions is the presence of very large coefficients that enable higher
order terms to fit the noise in the data. We might therefore propose

LECTURE 5: REGULARISATION

that somehow preventing the size of the coefficients from getting
too large would prevent this. We previously saw that a Gaussian
prior to concentrate the model weight near to zero results in an Lp
penalty with

R(w) = szz =wlw. (2)

With this choice, the loss function, with least-squares error, is
written

L(w)=(y—@w)" (y —dw) +Aw'w (3)

To minimise this requires that both the error term and the mag-
nitude of the weights are simultaneously minimised, with the free
parameter A controlling the relative extent to which each of these
terms contributes to the overall loss. Small values of A mean that
reducing the error is preferable to reducing the weight magnitude,
while large values of A favour reducing the weights over reducing
the error.

This is a relatively friendly regulariser with a closed-form ana-
lytical solution. We can proceed with the analysis as we did pre-
viously: we differentiate with respect to the weights and set this
to zero to find the minimum, noting that the new term is bounded
from below by zero, and has no upper bound:

dL1sg(wW)
ow
We set this to zero to obtain

= 20T (y — ®dw) + 2w, (1)

®Ty — (<1>T<1> - AI) w* =0 (5)
where we have employed the identity matrix I to enable the

expression to be factorised in this form. This method is referred to
in the literature by a number of different names:

® Ridge regression.

e [, reqularisation, because) ; wl2 is the L, norm of w, written as
2
|[w]l3-

¢ Weight decay, because it pushes weights towards zero.

o Tikhonov regularisation, of which it is a special case. Tikhonov
regularisation uses R(p) = ||Tw||. Here, we have I = AL

Let us investigate how this works in practice. In Figure 1 we
show the effect of different values of A on the learning of the
model. The fluctuations in the model curve are "smoothed" out
by the regularisation term. This comes at the cost of a higher error
(Figure 2), because the fit no longer exactly matches the data, but it
does model the trend in the data more effectively.

It’s also useful to look at the learned weights, shown in Table 1.
We can clearly see the “shrinkage” effect, with the larger values of
A giving rise to much lower values of the parameters.

LECTURE 5: REGULARISATION 3

Figure 1: Fitting y = sin(27rx) with

log(A)=-6 log(A)=-5 polynomial fits of degree M = 9
2 4 with L, regularisation using different
27 regularisation coefficients A. The blue
line represents the true function; the
0 0 - black points are the sampled points
> > (x;,y;); the red line is the best-fit
polynomial of that order.
-2 - -2 4
T T T T T T
-1 0 1 -1 0 1
X X
log(A)=-4 log(A)=-3
3 -
1 2 4
°
> > 14
0 -
O -
-1 ° -1 °
T T T T T T
-1 0 1 -1 0 1
X X

log(A)=-1
° °
1 -
> 0 -
[
-1 o
T T T T T T
-1 1 -1 0 1
X X
loglo A wo w1 wo w3 Wy Ws We wy wsg W9

-6 | 1.06 831 -17.92 -76.20 76.16 250.58 -112.92 -350.94 53.88 168.61
-5 | 1.67 5.77 -41.44 -29.12 212.84 31.81 -356.24 1.30 183.44 -9.40
-4 | 074 6.51 -5.21 -33.75 1.46 33.96 20.81 13.89 -17.55 -20.25
-3 1094 129 -9.30 5.42 15.29 -21.02 5.50 -4.36 -12.20 19.08
-2 | 0.20 4.26 2.26 -10.00 -5.63 -4.88 -0.83 2.60 433 8.47
-1 056 -212 -1.35 4.00 -0.63 1.44 0.50 -OBble 1: Mol weigRt3for different

value of A with L, regularisation. The
shrinkage effect of this regularisation
term is clearly seen.

Other common regularisation functions

L, regularisation is extremely common and many machine learning
libraries use it by default (this is something to be aware of when
working with external libraries), but it belongs to a much broader
class of regulariser known as the L, norms, which use a regularisa-
tion term of the form

R(w) =} [wi” 6)

1

Some common choices for the value of p include:
¢ p =2, the method we have already studied.

¢ p = 1: commonly know as the lasso method. When A is large,
this term tends to force some of the coefficients to zero. The
contours of constant L1 norm form a “diamond” in parameter
space (Bishop, Figure 3.3, P145), and the intersection of this
diamond with the circular contours of the least squares loss a
most likely to be at the apices of the diamond which lie on the
coordinate axes, where some of the coefficients are zero (Bishop,
Figure 3.4, P146).

® p < 1: this term also forces some of the model coefficients to
zero, but much more aggresively that L = 1 (Bishop, Figure 3.3,

P145).

The problem with p # 2 is that the normal equations do not
have a nice closed-form analytical solution. For p = 1, a num-
ber of numerical approaches have been developed, include FISTA
— Fast Iterative Shrinkage Thresholding Algorithm (see reading).
Other methods are even harder to solve numerically. Nonetheless,
methods that use p < 1 have become very popular in recent year
because of their sparsity-inducing properties in applications such
as image denoising and reconstruction, and because of the popu-
larity of “compressive sensing” methods that rely on finding sparse
solutions to complex inverse problems.

Because there is no closed form solution, we turn to scikit-learn

for an implementation of the lasso method. In Figure 3 we show the
results of different Li-regularised fits, with the weights shown in
Table 2. The sparsifying effect of the regulariser is clearly evident
from the table.

IOglo A wo w1 wo w3 Wy w5 We wy

LECTURE 5: REGULARISATION 4

1.0 -

« 0.8 1

o

o J

o 0.6

=

< 0.4 1

0.2
T T T
-6 -4 -2
log(A)

Figure 2: RMS Training Error of
polynomial fit with M = 9toy =
sin(27x) for different degrees of L,

-5 | 0.00 3.59 -0.00 -15.72 0.00 11.78 0.00 1.96
-4 | 0,00 3.54 0.0 -1527 0.00 11.05 0.00 1.93
-3 | 0.00 3.10 -0.00 -12.02 -0.00 5.44 -0.00 3.49

-2 | 000 095 -000 -3.76 -0.00 -0.00 -0.00 0.00
-1 | 000 -0.05 0.00 -0.00 -0.00 -0.00 -0.00 -0.00
0 | 0.00 -0.00 0.00 -0.00 -0.00 -0.00 -0.00 -0.00

regularisation.
ws Wo
0.00 -1.60
0.00 -1.24
-0.00 0.00
-0.00 2.74
-0.00 -0.00

~0.0@ble2-Mddel weights for different
value of A with L; regularisation. The
sparsifying effect of this regularisation
term is clearly seen.

log(A)=-5
° []
1 -
[]
[]
0 -
_1 -
-1 0 1
X
log(A)=-3
[]
1 -
[]
[]
> 0 -
_1 -
10 1
X
log(A)=-1
[]
1 -
[]
[]
> 0
_1 - °
10 1
X

log(A)=-4
° []
1 -
[
[]
0 -
_1 -
-1 0 1
X
log(A)=-2
° [
1 -
[
[]
> 0 -
_1 - °
1o 1
X
log(A)=0
° [
1 -
[)
[
> 0
_1 - °
1o 1

LECTURE 5: REGULARISATION 5§

Figure 3: Fitting y = sin(27x) with
polynomial fits of degree M = 9
with L; regularisation using different
regularisation coefficients A. The blue
line represents the true function; the
black points are the sampled points
(xi,y;); the red line is the best-fit
polynomial of that order.

LECTURE 5: REGULARISATION

The value of the regularisation weight A is a hyperparameter
of the algorithm that needs to be set. It is normal practice to treat
this in the same way as we treated the polynomial order: we use
cross-validation to select the optimal value. The advantage of reg-
ularisation over explicit model selection is that the optimisation
process can “choose” how to weight the higher order terms. For
example, if we use a sparsifying regulariser such as the L; norm on
data drawn from an underlying quadratic but with a fitting func-
tion of order ten, the sparsifying effect can set the coefficients of
the high order terms to zero. This can be a very powerful way of
controlling model selection.

Multivariate Regression

We have so far considered problems consisting of a single indepen-
dent variable x and a single dependency variable y. The arguments
we have developed can be easily extended to allow us to deal with
problems with multiple dependent and independent variables.
First, let us consider the case of multiple independent variables.
Here, we will have to be a bit careful with our notation because
things can easily become complicated. We will denote our indepen-
dent variables as x;. The value of the variable at a particular data
points will be denoted x; (for the j'th data point.). In these terms,
our dataset is written as

D = {(x1,i, X2, - - -/xK,ir]/i)}iI\i1 (7)

where we have K independent variables. Performing a regression
over this dataset can be done in exactly the same way as we did
for the case of a single independent variable — we choose a basis,
and them solve the normal equations — but with one important
difference: our basis matrix ® now needs to contain terms from all
variables. To illustrate this, consider the simplest possible case of
two independent variables, and a model that contains a constant
term and linear terms in the two variables:

Y = wp + wy1X1 + waxp (8)
which has basis matrix

1 x1 x0
1 x10 x0p

o= .))
1 xin XN

A more complex quadratic model

Y = wp + wiX1 + waxy + wg,x% + w4x§ + wsx1xp (10)

LECTURE 5: REGULARISATION 7

has basis matrix

2 2

T xip w1 x9p X3, X11X2:1
2 2

T x2 xp X7, X3, X12X22

o=) (11)

2 2
1 xmN XN Xy XN XNX2N

It is straightforward to generalise this to other models.

Now let us consider the case of multiple (L) dependent variables
y; (using the same notation as we did for the dependent variables).
There are two ways in which we could extend our analysis. The
first is to treat each dependent variable separately and to solve
multiple regression problems independently. Assuming that we use
the same choice of basis ® for each dependent variable we have

vi(xy,..xk) =Y wygi(x1,...,xx) = ®Tdw; = DTy (12)
j

ya(x1,...,xK) = sz,qu(xl,...,xK) — ®ldw, = dly, (13)
j

: (14)
yr(x1, ..., xg) = ZwL,]q)]-(xl,...,xK) — ®low, = dTy; (15)
i

(16)

where y] = [y]‘rl’y]',z’ .. '/yj,N] T and W; = [wifl, Wi, .- wi,M].
Alternatively, we could perform a "joint" optimisation over all of

the dependent variables in a single step. Combining the equations

for each dependent variable we arrive at the following relationship

Y11 Y21 .- YK P1(x1) Pa(x1) .. Ppm(xr) w11 W21 ... WK

Y12 Y22 ..o YK2 B P1(x2) Pa(x2) ... Pm(x2) w1y W22 ... WK2

YIN Y2N .- YKN P1(xn) p2(xn) .o Pm(xn)/) \wim wom ... WkM
—-Y = OW

where each column of Y corresponds to a dependent variable, and
the corresponding column of W holds the weights for that variable.
In these terms, the (unregularised) optimisation can be performed
jointly over all variables by solving the normal equations

oTow = o'Y. (17)

This simultaneously minimises the least-squared loss over all de-
pendent variables. Of course, it also requires that all dependent
variables can be modelled in terms of the same basis functions. If
this is not the case then the problem should be solved as a series of
independent regression tasks.

Non-linear Regression

This section is provided for information only and is not examinable con-
tent.

LECTURE 5: REGULARISATION

The analysis to date is restricted only to models that can be
expressed in a linear form, but there may be many cases where
this is not possible (eg. y(x) = asinbx, where we need to find a
and b). We will still aim to minimise the sum of the squares of the
residuals, but we cannot use the linearity of the fitting function to
help us formulate the problem in a tractable way that permits a
single-step solution. Our approach is to break the problem down
into a series of linear approximations, each of which reduces the loss
rather than absolutely minimising it.

We must formulate a process that rather than solving the normal
equations globally to find the value of w that minimises the error,
instead finds a set of parameters that simply reduces the error. We
will do this iteratively until no further reduction in error is possible.

We will proceed by examining the behaviour of the error when
we change w by a small amount. This we do by approximating the
function as a straight line over a small region using Taylor’s Theorem:

m
df (x:
flwraw) ~ few+) 2008 g
j=1 9wj
m
= flx,w)+) Jijow; (19)
=1
where matrix J has components J;; = %ﬁj") and the residual after

the change is
r(w+Aw) =y — f(w) — JAw (20)

where f;(w) = f(x;, w). The error is therefore
e(w + Aw) = (y — f(w) —JAw)" (y — f(w) —JAw). (21)

By minimising this quantity, we find the change in w that gives us
the largest reduction in the error. We differentiate as before and set
to zero:
(777) aw* =" (y — f(w)) (22)
which we know how to solve.
It is common practice to make a small modification to this:

(77 + 2 diag(1))) Aw* =" (y — £(w)) (23)

This is a regularisation that penalises large updates to the pa-
rameter vector along directions with steep gradients, encouraging
movement along shallow gradients and thus a faster convergence.
The amount of increase is controlled by the A which is modified
iteratively to give the best results. The full algorithm, named after
its inventors Levenberg and Marquadt is described in Algorithm 1.
This method is widely used for nonlinear regression problems, but
should be used cautiously because for complex models, there is the
possibility that the loss function will have multiple local minima,
and because this is a gradient-based method, it is prone to getting
stuck in these local minima. In this circumstance, other optimisa-
tion approaches that are not based on gradient descent should be
used, for examples, evolutionary/genetic algorithms.

Data: Data x, y; Initial parameter guess wy; Function f (x,w);
Jacobian Jac(x, w); initial values of A, v.
Result: w,e(w), parameters that minimmise the least squares
error, the error.

% Evaluate the error at the initial parameter value

W < Wp,

e (y— flx,w) (y — f(x, w);

% Iterate until convergence

Converged < False;

while Converged == False do

% Calculate the Jacobian

J %

% Calculate update for different values of A until
we improve the error

LambdaSet < false;

while LambdaSet==false do

% Calculate Aw for A =Agp and A = Ay/v

Ay = (J'T+ Adiag(J7T)) \TT (y — (x, w));

A2 = (7T + (A/v) diag (") \ ™ (y — £(x, w));

% Calculate the error at the new parameter values

er = (y — f(x,w+81)T(y — f(x,w);

e2 ¢ (y — fx,w+82) (y — fx, w);

if 1 < e then

% Set new values of w and ¢, storing old value
as ¢

wW<—w+Ag;

e e

e < e1;

% Current A is OK

LambdaSet < true;

Ise if e, < e then

% Set new values of w and e, storing old value

(¢

as ¢
W — W+ Ay;
e —e;
e < €,
A= A/v;
% Current A is OK

LambdaSet < true;
else
| A< AXxvy;

end

if ¢’ /e < TerminationCriterion then
| Converged « true

end

end
Algorithm 1: The Levenberg-Marquadt Algorithm.

LECTURE 5: REGULARISATION ¢

LECTURE 5: REGULARISATION

Reading

* Section 3.1 of Bishop, Pattern Recognition and Machine Learn-
ing.

® Amir Beck and Marc Teboulle. A Fastlterative Shrinkage-Thresholding
Algorithm for Linear Inverse Problems. SIAM Journal of Imag-
ing Sciences. Vol. 2, No. 1, pp. 1834AS202 (2009). https://
people.rennes.inria.fr/Cedric.Herzet/Cedric.Herzet/
Sparse_Seminar/Entrees/2012/11/12_A_Fast_Iterative_
Shrinkage-Thresholding_Algorithmfor_Linear_Inverse_
Problems_(A._Beck, M. _Teboulle)_ files/Breck 2009.pdf

¢ Richard Baraniuk. Compressive Sensing. IEEE signal processing
magazine 24, no. 4 (2007). https:/ /ieeexplore.ieee.org/stamp /stamp.jsp?arnumber=4286571

10

https://people.rennes.inria.fr/Cedric.Herzet/Cedric.Herzet/Sparse_Seminar/Entrees/2012/11/12_A_Fast_Iterative_Shrinkage-Thresholding_Algorithmfor_Linear_Inverse_Problems_(A._Beck,_M._Teboulle)_files/Breck_2009.pdf
https://people.rennes.inria.fr/Cedric.Herzet/Cedric.Herzet/Sparse_Seminar/Entrees/2012/11/12_A_Fast_Iterative_Shrinkage-Thresholding_Algorithmfor_Linear_Inverse_Problems_(A._Beck,_M._Teboulle)_files/Breck_2009.pdf
https://people.rennes.inria.fr/Cedric.Herzet/Cedric.Herzet/Sparse_Seminar/Entrees/2012/11/12_A_Fast_Iterative_Shrinkage-Thresholding_Algorithmfor_Linear_Inverse_Problems_(A._Beck,_M._Teboulle)_files/Breck_2009.pdf
https://people.rennes.inria.fr/Cedric.Herzet/Cedric.Herzet/Sparse_Seminar/Entrees/2012/11/12_A_Fast_Iterative_Shrinkage-Thresholding_Algorithmfor_Linear_Inverse_Problems_(A._Beck,_M._Teboulle)_files/Breck_2009.pdf
https://people.rennes.inria.fr/Cedric.Herzet/Cedric.Herzet/Sparse_Seminar/Entrees/2012/11/12_A_Fast_Iterative_Shrinkage-Thresholding_Algorithmfor_Linear_Inverse_Problems_(A._Beck,_M._Teboulle)_files/Breck_2009.pdf

	Regularisation
	Multivariate Regression
	Non-linear Regression
	Reading

