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The Curse of Dimensionality

Why might the dimensionality of the data affect the classification
accuracy of a nearest-neighbours approach? We will spend this
lecture trying to understand why high dimensionality is different.
But first, we will try something ridiculous to see what difference
the dimensionality makes. We will take each of our image vectors,
which have 28× 28 = 784 elements, and we will take their scalar
(dot) product with each of 40 784-dimensional random vectors;
vectors where the components are drawn independently from a
normal distribution N (0, 1) with mean 0 and variance 1. For image
vectors vi, and random vectors ri (both assumed to be column
vectors) we compute new vectors
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The zi are said to be random projections of the original image vec-
tors v. There is one of these per sample in the dataset, but each
now has only 40 components, instead of the original 768. Super-
ficially this seems to be a very strange thing to do indeed: why
would we even consider this? That is a question to which we will
return in due course. For the moment though, let us just try it. We
form new training and test sets by randomly projecting every ele-
ment of both sets onto the same 40 random vector, and we apply
knn, with k = 7 to the random projections. The results of this are
shown in Figure 1.

Something quite dramatic has happened. The overall accuracy
has increased from 75% to 87%! The troublesome characters 3, 4

and 5 are now classified with > 80% accuracy. The random projec-
tion must have done something quite dramatic to our data. We will
next try to understand what has happened, and why. It turns out
that computing distances between high-dimensional vectors is not
as innocuous as it might seem, and there is a hidden danger.

The Curse of Dimensionality

The underlying reason that reducing the dimensionality of the data
using a random projection was useful is that the properties of high
dimensional vector spaces are strange and counter intuitive. For
a simple example of how our intuition breaks down, consider the
following example.
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T
P

0 1 2 3 4 5 6 7 8 9

0 98 0 0 0 0 1 0 0 1 0

1 0 100 0 0 0 0 0 0 0 0

2 3 4 79 1 0 1 4 3 5 0

3 0 4 2 84 0 1 1 3 2 3

4 0 1 0 0 85 0 1 2 2 9

5 0 2 0 3 1 86 4 2 1 1

6 1 0 0 0 1 6 91 1 0 0

7 0 3 1 1 1 0 0 91 0 3

8 1 0 5 13 3 4 1 2 70 1

9 0 1 0 0 6 0 0 2 2 89
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Figure 1: MNIST classification results
(Target T vs Prediction P) with kNN
for k = 7 using 40 random projections
of the data.

A hypercube is the n-dimensional analogue of a square in 2d, and
cube in 3d. In each dimension, the cube has a side of length 2r so
that the centre of each of its faces is a distance r from the centre of
the hypercube. Consider now the hypersphere that the hypercube
encloses. The hypersphere, which is defined as the set of points a
distance r from some central point, intersects with the hypercube
only at the centres of the faces. This is shown in 3d is Figure 2

Figure 2: A sphere in 3d and its
enclosing hypercube.

By definition, all of the points on the sphere are a distance r from
the centre. The faces of the cube are also r from the centre. How
far away from the centre are the corners of the hypercube? The an-
swer is trivial to compute, but has surprising implications. In 2d,
the corner of a square is

√
r2 + r2 = r

√
2 from the centre. In 3d,

the corner of a cube is
√

r2 + r2 + r2 = r
√

3. The pattern is obvious
and follows directly from Pythagoras’ theorem. In n-dimensions,

the corner of a hypercube (of side length 2r) is
√

∑n
i=1 r2 = r

√
n.

We plot this relationship in Figure 3. Remembering that the sur-
face of the hypersphere is always r from the origin, we see that the
distance to the corner is many times the sphere radius in high di-
mensions. In other words, although the sphere touches the cube in
the centre of all of its faces, it does not get near to the corners.
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Figure 3: The distance from the centre
to the corners of a hypercube of side
r = 1 increases as the square-root of
the dimensionality.

Let us look at this in a different way and consider the fraction
of the the volume of the hypercube that is occupied by its enclosed
hypersphere. In 2d, a square of side 2r has area 4r2. The enclosed
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circle has area πr2, and so the circle occupies a fraction π/4 ≈ 0.785
of the square. In 3d, the cube has volume 8r3; the sphere has vol-
ume 4πr3/3, and the ratio is 4π/24 = 0.52. This is already a sub-
stantial decrease! In n-dimensions, the volume of the hypercube is
(2r)n, and the volume of the hypersphere can be shown to be given

by π
n
2

Γ( n
2 +1)

Rn, where Γ(x) is the Gamma function, an extension

of the factorial function that is beyond the scope of this module
to study in detail. Some information can (naturally!) be found at
https://en.wikipedia.org/wiki/Gamma_function. Using these
results, we plot the sphere/cube ratio in Figure 4.
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Figure 4: The ratio of the volume of a
hypersphere to its enclosing hypercube
as a function of dimensionality.

It is remarkable how quickly the ratio drops to zero: in 10d,
nearly all of the volume in the cube is outside of the sphere. When
combined with our previous result on the distance from the cen-
tre of the cube to its corners, we may conclude that nearly all of
the volume of a hypercube is near to the corners, and that almost
no volume is near the centre. This can, if you so wish, be verified
numerically by constructing a grid of evenly spaced points in high
dimensions and seeing how many are within distance r of the cen-
tre: very few.

To conclude this discussion, consider two hyperspheres, of ra-
dius r and r− δ respectively (with δ � r). The volume of the larger
sphere is αrn, where α is a constant that depends on the dimen-
sionality n; and the volume of the smaller sphere is α(r − δ)n. The
volume of the "shell" that is inside the larger sphere but outside the
smaller sphere is therefore α (rn − (r− δ)n). As a proportion of the
larger sphere, the shell occupies a volume

Vshell
Vsphere

=
α (rn − (r− δ)n)

αrn (2)

= 1− r−n(r− δ)n (3)
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Taking the limit as the dimension tends to infinity gives

lim
n→∞
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= 1 (7)

because 1− δ
r < 1. Thus most of the volume of the hypersphere is

concentrated in a thin shell around its edge and most of the volume
is at its edge.

Although these results are intrinsically interesting, it is not
clear that they are immediately relevant to our problem of doing
distance-based classification of MNIST digits, so let us perform
a simple numerical experiment. For a range of dimensionalities,
we generate 106 uniformly randomly distributed data points and
compute the distances between all pairs of points. We then find

https://en.wikipedia.org/wiki/Gamma_function
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the maximum and minimum distances between points and com-
pute the ratio of the range of distances as compare to the minimum
distance, (dmax − dmin)/dmin. The resulting graphs are shown in
Figure 5.
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Figure 5: Top: Minimum (red) and
maximum (blue) pairwise distances
in a set of 106 uniformly randomly
distributed data points as a function
of dimensionality. Bottom: The ratio
(dmax − dmin)/dmin.

The figure provides an empirical verification of a well-known
result:

lim
n→∞

E

(
dmax − dmin

dmin

)
→ 0 (8)

which is a statement that in high dimensions, the difference be-
tween minimum and maximum distances between points tends
towards zero, and hence all distances become "similar". This result
has profound implications for any algorithm that requires computa-
tion and comparison of pairwise distances in high dimensions, and
is commonly referred to as the curse of dimensionality.

To what extent is this relevant in MNIST? To test this, we com-
pute the pairwise distances between 1000 points from the test set
and 1000 points from the training set and plot a histogram of their
distribution (Figure 6). This shows that there are no "small" dis-
tances in the data, a direct result of each pairwise distance being
the sum of the squares of each of 784 components, and the distribu-
tion of distances is roughly normal, with a mean/median of ≈ 2300
and a standard deviation of ≈ 300. This means that 68% of pairwise
distances lie between 2000 and 2600, and 95% between 1700 and
2900. The range of distance is indeed compressed, but perhaps not
as much as we might have expected. Why is this?

100020003000
||r1 r2||

0.0000

0.0005

0.0010

P(
||r

1
r 2

||)

Figure 6: Distribution of pairwise
distances in pixel space between 1000

examples from the MNIST test set, and
1000 examples from the training set.

Reading

Section 1.4 of Bishop, Pattern Recognition and Machine Learning
has a good discussion of the curse of dimensionality. An expansive
treatment on the role that randomised methods can serve in high-
dimensional problems is given in the article “Finding Structure
with Randomness: Probabilistic Algorithms for Constructing Ap-
proximate Matrix Decompositions”, N. Halko, P. G. Martinsson, J.
A. Tropp. SIAM Review Vol. 53, No. 2, pp. 217âĂŞ288 (2011). This
is one of my favourite articles ever, and has been very influential in
my own work.
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