
Lecture 9: A Probabilistic and Generative Approach
to Classification
Iain Styles
8 November 2019

Linear and Quadratic Discriminant Analysis

k-nearest-neighbours is a classification technique that is discrimi-
native: it is able to discriminate between different classes of data
on the basis of their nearest neighbours in the training set. We will
now look at a different approach to classification based on a gener-
ative model. The basic idea is that we build probabilistic models of
the data classes and use these to derive explicit boundaries between
the classes (Figure 1). Thus, training learns where the boundaries
lie; inference determines where new data lies in relation to the
boundaries. We will develop the mathematics for a linear binary
classifier for which the decision boundary will be a linear combina-
tion of variables that discriminates between two classes of point (i.e.
binary).

Figure 1: An example of an explicit
classification boundary between two
classes.

Our approach will make use of Bayes’ theorem and we will
therefore need to define the probability density functions that rep-
resent our prior knowledge and the likelihood. First we define our
prior knowledge of the data: we define prior probabilities

P(x ∈ Πi) = πi (1)

that express the probability that a randomly selected observation x
is in class Πi. This requires us to understand something of the prior
distribution of the classes. For MNIST, the prior is uniform and the
same for all classes because the data is balanced, and so πi = 0.1 for
all classes i. This will, of course, not be the case for other datasets.

We now define the likelihood of an observation, given that it is
coming from a specified class, as the conditional probability

P(x|Πi) = fi(x) (2)

Note that we do not yet define what this probability density
function looks like – we will do this later.

Given these quantities, a simple application of Bayes’ theorem
allows us to calculate the posterior probability P(Πi|x), that is, the
probability that a given point x belongs to class Πi. For a two-class
model we have

P(Πi|x) =
P(x|Πi)P(Πi)

P(x)
(3)

=
fi(x)πi

f1(x)π1 + f2(x)π2
(4)

So, if we know the prior distributions of the groups, and the distri-
bution of points within each of the groups, then we can compute
the probability of a specific point being in each of the groups, and

lecture 9: a probabilistic and generative approach to classification 2

assign the point to the class to which it belongs with the highest
probability. That is,

P(Π1|x)
P(Π2|x)

> 1 7→ x ∈ Π1 (5)

otherwise x ∈ Π2. Re-expressing in terms of f and π we find that x
belongs to Π1 if

f1(x)
f2(x)

>
π2

π1
(6)

otherwise to Π2. If the ratios are equal, then randomly (and with
equal probability) assign the point to either class.

In order to implement this, we either need to know or to assume
something about the properties of our classes. We will assume the
following for a simple two-class binary classifier:

• Each data point belongs to exactly one of exactly two distinct
and identifiable groups, Π1 and Π2

• The two groups are normally distributed with different means x̄1

and x̄2 but identical covariances ΣΣΣ.

Covariance is a measure of the extent to which two variables
change together. It is defined for two variables X and Y as ΣX,Y =

E [(X− X̄)(Y− Ȳ)] (where X̄ is the mean value of X). and is re-
lated to the correlation ρx,y by ρx,y = Σx,y/σxσy. As such, positive
covariance implies that two variables increase/decrease together,
whilst a negative covariance implies that as one increases, the other
tends to decrease. For a multivariate problem, we can compute a
covariance matrix ΣΣΣ with components

Σij =
1

N − 1

N

∑
n=1

(
x(n)i − x̄i

) (
x(n)j − x̄j

)
(7)

which describe the covariance between the variables xi and xj,
computed over N datapoints. It should be noted that when we
compute the mean and covariance from data, they are known as the
sample mean and sample covariance and are not necessariy the same
as the true mean and covariance. This is especially problematic
when we only have a small number of data points. Caution: care is
needed when computing the sample covariance from data.

There is a simple way to compute ΣΣΣ if we organise our dataset
in a sensible way. First, we construct the matrix X with components
Xij = x(j)

i ; that is, each row of X corresponds to a variable, and each
column corresponds to a sample. Then, compute the mean of every
row (variable) and tile the resulting column vector side-by-side N
times such that every column is identical and every row contains
the mean value of the corresponding variable in every column. We
will call the new matrix X̄. Then, we form the covariance matrix as

ΣΣΣ =
1

N − 1
(X− X̄) (X− X̄)T

= X̃X̃T. (8)

lecture 9: a probabilistic and generative approach to classification 3

Given the covariance matrix, we can then build a probabilistic
model of the class-conditional likelihood, which is a multivariate
distribution where the variables are not independent. This can be
modelled, for classes n = {1, 2}, as:

P(x|Πn) = fn(x) =
1

(2π)r/2 |ΣΣΣ|1/2 exp (−1
2
(x− x̄n)

TΣΣΣ−1(x− x̄n))

(9)
We have made two strong assumptions in writing down this

distribution. First, we assume that each class obeys a normal dis-
tribution. Secondly, we assume that the covariance of each class is
the same. Beware: this does not mean that the covariance of each
class is the same as the covariance of their union: the classes have
different means. There are no guarantees that this will hold for any
particular example. The method can be modified to permit differ-
ent covariance structure for each class and we will do this shortly.
Notice that if the variables are independent, the covariance matrix
is diagonal and contains only the variances of each variable. This
allows the distribution to be factorised into product form, which
can simplify the calculations. We will not consider this further here.

These probability density functions model the distributions of
the points in our two classes, and permit us to formulate the clas-
sification rule. We will now derive a rule that maximally separates
the two groups. First, consider the logarithm of the ratio of the two
probability distributions. The normalising prefactor is the same in
both cases and so we need only consider the exponentials which are
"cancelled" by the logarithm:

ln
f1(x)
f2(x)

= (x− x̄1)
TΣΣΣ−1(x− x̄1)− (x− x̄2)

TΣΣΣ−1(x− x̄2) (10)

= (x̄1 − x̄2)
T ΣΣΣ−1x− 1

2
(x̄1 − x̄2)

T ΣΣΣ−1 (x̄1 + x̄2) (11)

This is linear in x: the second term on the RHS of this equation is
independent of x and is a scalar quantity. We write

L(x) = ln
f1(x)π1

f2(x)π
= ln

f1(x)
f2(x)

+ ln
π1

π2
= MTx + c, (12)

which is linear in x and has “gradient”

M = ΣΣΣ−1 (x̄1 − x̄2) (13)

and “intercept”

c = −1
2
(x̄1 − x̄2)

T ΣΣΣ−1 (x̄1 + x̄2) + loge
π1

π2
(14)

With L(x) written in this way, and by reference to Eq. (6) we have
the classification rule

if L(x) > 0 assign x to Π1 (15)

else assign x to Π2. The “straight line” defined by Eq. (13) defines a
boundary between the classes.

lecture 9: a probabilistic and generative approach to classification 4

The particular form of LDA we have introduced here is Gaus-
sian LDA, and the the function MTx is referred to as Fisher’s linear
discriminant function.

The application of LDA is straightforward: the class means and
covariance are estimated, and this permits equations (13) and (14)
to be evaluated. In practice it is common to make these estimations
from the training data in the absence of better information, subject
to the caveats noted earlier.

LDA makes two strong assumptions about our data. First, we
have imposed a Gaussian distribution on the data without any jus-
tification for doing so. This will hold for some problems, but is not
guaranteed to hold in the general case. Caution is also necessary
when working with small sample numbers because the estimates
of the parameters of the distribution (mean, covariance) will be
subject to significant uncertainty. Secondly, we have assumed that
the classes differ only by their means, and that they have the same
covariance structure. This is a very strong assumption that is very
unlikely to be true in most situations, although this may not stop
LDA from being an effective classifier.

Fortunately, it is not too difficult to extend the analysis to the
case where the covariances of the classes are not equal. A signifi-
cant quantity of algebra is required and we do not reproduce the
derivation here1 If the covariances of the two groups are given by 1 See Chapter 8 of Izenman, Multivari-

ate Statistical Analysis, Springer (New
York) 2013

ΣΣΣ1 and ΣΣΣ2 then the discriminant function (Eq. (12)) becomes

Q(x) = xTAx + bTx + c (16)

with

A = −1
2

(
ΣΣΣ−1

1 −ΣΣΣ−1
2

)
(17)

b = ΣΣΣ−1
1 x̄1 −ΣΣΣ−1

2 x̄2 (18)

c = −1
2

(
loge
|ΣΣΣ1|
|ΣΣΣ2|

+ x̄T
1ΣΣΣ−1

1 x̄1 − x̄T
2ΣΣΣ−1

2 x̄2

)
− loge

π1

π2
(19)

and the classification rule being

if Q(x) > 0 assign x to Π1 (20)

else assign x to Π2. This is known as the Quadratic discriminant.

Multiclass LDA

So far, our analysis has been restricted to binary classification.
Many problems involve more than two classes so an extension to
multiple classes is useful, although the algebra is significantly more
complex. The general argument is that we compute the pairwise
relative probabilities as before and form the discriminant between
classes i and j as

Lij(x) = loge

(
P(Πi|x)
P(Πj|x

)
= loge

(
fi(x)πi
f j(x)πj

)
(21)

lecture 9: a probabilistic and generative approach to classification 5

and then x is assigned to Πi if Lij > 0 for all j 6= i. From this it
follows from the earlier argument that the discriminant function is

Lij(x) = mT
ijx + cij (22)

with

mij =
(
x̄i − x̄j

)T ΣΣΣ−1 and (23)

cij = −1
2

(
x̄T

i ΣΣΣ−1x̄i − x̄T
j ΣΣΣ−1x̄j

)
+ loge

πi
πj

. (24)

One key point to note about this is we are drawing boundaries
in space and it is not obvious that these are necessarily consistent
with each other. The obviously problematic situation is shown in
Figure 2, where in the shaded gray region in the middle, P1 < P3,
P3 < P2, and P3 < P1 and we cannot resolve the class (1, 2, 3)
in that region. However, a moment’s thought explains why this
situation is impossible. The class boundaries have been constructed
from the lines P1 = P2, P1 = P3, and P2 = P3 and therefore they
must meet at a single point where P1 = P2 = P3. The division of
space is self-consistent by design.

P1=P2

P2=P3

P1=P3
P2>P3P2<P3

P1
>P
3

P1
<P
3

P
1>
P
2

P
1<
P
2

1

1

3
3

?
2

2

Figure 2: Decision boundaries in
multiclass LDA. The shaded gray
region in the middle is impossible by
construction.

LDA on MNIST

Let us see how LDA performs on MNIST digit classification. This
is a ten-class problem and we will therefore need to use multiclass
LDA. LDA requires that we model the distribution of data within
each class as a Gaussian, and that the covariance of each class dis-
tribution is the same. We will not attempt to determine whether
this is true for this problem, because this is, in general, a very dif-
ficult thing to do. Instead, we assume that this is the case and see
how well we can do. Note that this is extremely common practice,
although perhaps should not be encourage. As we will see, it can
work very well even if the assumptions are not met.

Our model for the distributions of the data in each of the classes
is the multivariate normal distribution (Equation (9)). First, we note
that the prefactor is the same in all cases if we assume the same
covariance for each class, so we can ignore this because we will be
taking ratios of the class distributions (Equation (21)). Secondly, we
need to compute the mean of each class {x̄i}9

i=0. This is a straigh-
forward calculation that we do by taking the mean of each pixel
for the images in that class. Thirdly, we need to compute the co-
variance that we assume to be the same for each class. With this,
we have to be careful. It is tempting to simply compute the covari-
ance of the whole dataset, but this is not the correct thing to do:
the covariance of the dataset is not the same as the class covariance
because the classes are in different locations in the image space.
Since we take the covariances to be the same for all class, we esti-
mate this by aligning the means of the classes and then computing
the covariance over the whole dataset. Note that we must align the
means because otherwise the covariance matrix will be modelling

lecture 9: a probabilistic and generative approach to classification 6

inter-class rather than intra-class variations. In practice, this means
that we substract the class mean from every point in the dataset,
and then compute the covariance, before moving the points back to
their original position. This approach has many problems from a
statistical perspective, but seems to work well in practice.

A further issue arises in the MNIST problem because of the non-
varying pixels in the data. These lead to entire rows/columns of the
covariance matrix being all-zero and are therefore not linearly inde-
pendent. This means that the necessary matrix inversion cannot be
performed. We therefore have to remove these from the data before
computing the covariance.

Finally, we compute the class priors {πi}9
i=0 by computing the

proportion of the training set that belongs to each class. This gives
us all of the information we need.

We train the model by computing the class means, the covari-
ance, and the class priors, from the training data. From this, we can
compute the class separation boundaries. In practice, though, it is
not necessary to compute these explicitly. Instead, we can classify a
new data point x by simply computing arg maxi fi(x)πi.

The results of applying this to the MNIST test set as shown in
Figure 3. The overall classification accuracy is 83%. This might
be regarded as impressive given tha naïvety of the approach we
have taken here. There is no guarantee that the data obeys LDAs
assumptions and we have sought no assurances that LDA will
perform well on this data. Furthermore, by comparison with k-nn,
LDA is computationally very efficient. Whilst there is no training in
k-nn, inference has time complexity O(N2), where N is the number
of samples (pairwise distance have to be computed between all
pairs of points). In LDA, training and inference both have time
complexity O(NM) (where M is the number of classes) – a huge
saving in this case where M� N.

Generative Properties of LDA

The basis of LDA is that we “fit” a normal distribution to each class
of data and use the lines of equality between the classes to define
the boundaries between them for classification purposes. Because
we have learned the distribution of the data in the form of the class
conditional distribution, we are able to resample from the distri-
butions and generate new samples. This can potentially be useful in
situations where data is limited, but is increasingly being used as
an end in itself to generate realistic synthetic examples. The state
of the art in this area uses generative adversarial networks (GANs),
a technique in which a generator and discriminator (real/not real)
are trained against each (adversarially) such the the generator tried
to fool the discriminator that its samples are real, and the discrimi-
nator tries to guess whether the sample it sees is real or not. By co-
training the discriminator and generator, both can simulataneously
improve which leads to vastly improved quality of generated sam-

lecture 9: a probabilistic and generative approach to classification 7

T
P

0 1 2 3 4 5 6 7 8 9

0 0.96 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.01 0.00

1 0.00 0.96 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00

2 0.09 0.03 0.73 0.03 0.02 0.00 0.03 0.01 0.05 0.00

3 0.07 0.00 0.02 0.82 0.00 0.02 0.00 0.01 0.03 0.01

4 0.03 0.01 0.01 0.00 0.88 0.00 0.01 0.00 0.01 0.05

5 0.05 0.01 0.00 0.04 0.01 0.79 0.02 0.01 0.04 0.02

6 0.12 0.01 0.01 0.00 0.02 0.03 0.79 0.00 0.02 0.00

7 0.09 0.03 0.01 0.01 0.02 0.00 0.00 0.77 0.00 0.07

8 0.04 0.03 0.01 0.03 0.02 0.04 0.01 0.00 0.80 0.03

9 0.04 0.01 0.00 0.01 0.06 0.00 0.00 0.04 0.01 0.83

0 2 4 6 8
Prediction

0

2

4

6

8

Ta
rg

et

Figure 3: Confusion table and matrix
for multiclass LDA on the MNIST
dataset.

lecture 9: a probabilistic and generative approach to classification 8

ples. The best current approach to this is “BigGAN” from Google
Brain, described at https://arxiv.org/abs/1809.11096.

Our model is nowhere near as sophisticated as this: we have
assumed that all classes are normally distributed and have the
same covariance, and will simply resample from the estimated
distributions. Ten generated samples from each class are shown in
Figure 4. Some of these samples are identifiable, others are less so.
This is far from the state-of-the-art, but the distributions are clearly
capturing the essence of the data, although certainly not the details.

Figure 4: Ten examples of generated
samples from MNIST, using the
distributions learned by multiclass
LDA.

Reading

The derivations here follow Chapter 8 of Izenman, Multivariate
Statistical Analysis, Springer (New York) 2013. In Bishop’s Pattern
Recognition and Machine Learning, Chapter 4 covers this topic and
more in detail.

https://arxiv.org/abs/1809.11096

	Linear and Quadratic Discriminant Analysis
	Reading

