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Logistic Regression

In LDA, we determine the decision boundary by explicitly mod-
elling the distribution of each class. We showed that this can be an
effective classification method, even if the assumptions of the un-
derlying model (Gaussian class-conditional likelihoods with equal
covariance) are not met. We will look at an alternative probabilistic
approach to classification that does not rely on explicit modelling
of the likelihood: logistic regression. As the name suggests, this is
related to the regression problem for continuous variables that we
studied earlier in the module.

We will formulate logistic regression initially for two-class binary
classification. The key idea is that we will model the probability
(actually the odds) of an observation being in a class as a linear
combination of the independent variables. Given a set of input
features, we will seek to return one of two possible output values
Y = {0, 1} that indicate which of the two classes a sample belongs
to.

The key quantity that we will work with is odds, defined as the
ratio of the probabilities of the two possible outcomes. If we denote
pi(x) = P(Πi|x), then the odds that the measurement is in class Π1

is o1 = p1/p0 = p1/(1− p1) since we have a two-class problem. The
logarithm of the odds – the so-called logit – is then

logit(p1) = ln
(

p1

1− p1

)
(1)

We might reasonably ask why this is a sensible thing to do. The
posterior probabilities P(Πi|x) are, of course, limited to the range
[0, 1]. If we wish to formulate classification as a regression problem,
we need to map the possible outputs of a regression model which
lie in the range (−∞, ∞), onto the possible classification outputs
so that we can build a regression model. This is what the logit
function does, as shown in Figure 1. It maps (−∞, ∞) 7→ (0, 1) with
a sharp “transistion zone” between the extremes that effectively
maps the continuous input into a binary output with a thin non-
binary zone between the two extremes.
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Figure 1: The logit function maps [0, 1]
to [−∞, ∞].

Now that we have transformed the probability to a continuous
variable in R, we can model it as a regression problem. We write

logit(p1) = ln
(

p1

1− p1

)
= w0 + w1x1 + · · ·+ wnxn = wTx (2)

where we use only the linear terms in the independent variables
x = 1, x1, x2, . . . , xM. Taking the exponential of both side and rear-
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ranging, we can show that

p1 =
exp(wTx)

1 + exp(wTx)
and p0 = 1− p1 =

1
1 + exp(wTx)

(3)

The probability p1 therefore depends on x and w so we will write
this as p1(x, w).

We now formulate the likelihood over a set of observations and
maximise this to train the model. Given N independent observa-
tions {xi, yi}N

i=1, the overall likelihood is the product of the likeli-
hoods of the individual observations. Noting that the observations
yi are binary ({0, 1}), the joint likelihood can be written:

L(w) =
N

∏
i=1

p1(x, w)yi p0(x, w)1−yi (4)

=
N

∏
i=1

p1(x, w)yi (1− p1(x, w))1−yi (5)

As we did in the probabilistic formulation of regression, we choose
w by maximising the likelihood, or equivalently the log-likelihood
which is

lnL(w) = ln(L(w)) =
N

∑
i=1

yi ln(p1(x, w)) + (1− yi) ln(1− p1(x, w))

(6)

=
N

∑
i=1

yi [ln(p1(x, w))− ln(1− p1(x, w))] + ln(1− p1(x, w))

(7)

=
N

∑
i=1

yi ln
p1(x, w))

1− p1(x, w)
+ ln(1− p1(x, w)) (8)

=
N

∑
i=1

yiwTx− ln(1 + exp(wTx)). (9)

The optical weights w∗ that maxmimise the likelihood are there-
fore given by

w∗ = arg max
w

[
N

∑
i=1

yiwTx− ln(1 + exp(wTx))

]
(10)

This is as far as we can get analytically, and this quantity can’t, in
general, be maximised by hand to provide a closed-form solution.
The normal method for solving this is to use an iterative method of
solution called IRLS – Iterative Reweighted Least Squares – but a
detailed explanation of this is beyond the scope of this course. The
interested reader should refer to Section 8.3 of Izenman1. 1 Izenman, Multivariate Statistical

Analysis, Springer (New York) 2013Given the optimal weight vector w∗, we are then in a position to
compute the decision boundary, with reference to Equation (2). A
data point x should be assigned to class 1 if p1 > 1− p1, which is
when logit(p1) > 0. The decision rule is therefore

w∗Tx > 0 → x ∈ Π1
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Alternatively, we can compute the probabilities directly, recalling
that

p1 =
exp(w∗Tx)

1 + exp(w∗Tx)
and p0 =

1
1 + exp(w∗Tx)

(11)

and then x is assigned to the class with the higher probability.
It is useful to draw some comparisons between logistic regres-

sion (LR) and LDA. Both are formulated from a statistical per-
spective, but there are some key differences that have been written
about in the literature.

1. The statistical assumptions are much more relaxed in LR as
compare to LDA. In particular there is no assumption that the
likelihoods are are multivariate Gaussian. In principle, this make
LR more robust to non-normality than LDA.

2. There is no assumption that the class distributions have the same
covariance.

3. LR is much less efficient than LDA for large sample sizes.

4. LR can require larger dataset sizes to work well.

Multiclass Logistic Regression

The generalisation of LR to multiple (M) classes is straighforward.
The logit Li = ln( pi

1−pi
) = w∗Ti x is computed for every class bound-

ary i, and the class with the highest probability is selected. One
common way to do this is to choose a single reference class as a
“pivot” and compute all boundaries against that class, choosing
the one with the highest probability. Given M classes, we compute
the logit of every other class against one class. We will choose the
“last” class M (noting that they can be reordered arbitrarily), and
compute the logit as ln( pi

pM
) for all i.

ln
p1

pM
= w∗T1 x (12)

ln
p2

pM
= w∗T2 x (13)

. . . (14)

ln
pM−1

pM
= w∗TM−1x (15)

(16)

Exponentiating, we have

pi = pM exp(w∗Ti x) for i={1,2,. . . ,M-1} (17)

and because all probabilities must add to one we know that

M

∑
i=1

pi = 1 → pM = 1−
M−1

∑
i=1

pM exp(w∗Ti x) (18)

and therefore
pM =

1
1 + ∑M−1

i=1 exp(w∗Ti x)
. (19)
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Finally, we substitute this into Equation (17) to obtain

pi = pM exp(w∗Ti x) =
exp(w∗Ti x)

1 + ∑M−1
i=1 exp(w∗Ti x)

(20)

Thus we perform multiple binary LRs of each class against the
pivot class ΠM to find the parameters w∗i for each class i, and as-
sign x to the class with the highest probability pi. As before, these
regressions cannot be solved in closed-form and we must do this
numerically with IRLS.

LR is implemented in most machine learning libraries. In the ac-
companying Jupyer Notebook, we use the version implemented in
scikit-learn to run LR on the MNIST dataset. This can be found
at https://drive.google.com/open?id=1-vpNgx3PtdyRGv1pC0PYrR-X-vdf8jJT.

Reading

Section 4.3 of Bishop, Pattern Recognition and Machine Learning.

https://drive.google.com/open?id=1-vpNgx3PtdyRGv1pC0PYrR-X-vdf8jJT
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