
Lecture 12: Decision Trees
Iain Styles
22 November 2019

Decision Trees

Decision trees are designed to reflect, in a weak sense, the way in
which humans make decisions. After all, it is rather unnatural for
us to think in terms of mapping every problem into a vector nota-
tion. In a decision tree, we learn an explicit set of binary decisions
on the features in the data in order to arrive at a final decision. This
is perhaps best illustrated with a (trivial) example. Consider the
process that you may go through when considering whether to buy
a new laptop. You may ask the following questions:

• Do I need a new laptop?

• Can I afford it?

• Does it meet my specification?

These characteristics (need/afford/specification) are essentially the
features based on which we will make a classification decision (buy
or not). These questions can be visualised in a tree-like diagram
and the path by which one might make a decision is shown in
Figure 1

Laptop

Do not buy

Do not need Do not buy

Does not meet spec

Buy

Meets spec

Affordable

Do not buy

Not affordable

Need

Figure 1: A simple example of a
decision tree.

This is, of course, not a unique tree for this example. Figure 2

shows another way in which this tree could be constructed.

Laptop

Do not buy

Does not meet spec Do not buy

Not affordable

Buy

Affordable

Need

Do not buy

Do not need

Meets spec

Figure 2: A second example of a
decision tree with a different ordering.

The ordering in which we, as individuals, construct this tree will
depend on our own personal priorities. In machine learning, we

lecture 12: decision trees 2

hope to be a little more objective about the way we make our deci-
sions and in constructing a decision tree, we will need to consider
how we choose the following aspects of our tree:

• In what order should we consider the features?

• What should our decision-making criteria be for each feature?

To illustrate this, a further refinement of our decision tree is
shown in Figure 3. In this formulation, we have taken whether the
meets the specification or not to be the most informative feature: if
it does not, we absolutely will not consider buying it and the other
features are not considered. If it does, then we consider the cost,
introducing a specific price above which we will not buy the laptop,
regardless of whether we need it. The key idea when learning a
decision tree is that we need to learn, from the data:

1. Which feature should we next consider?

2. What the decision threshold value of each feature should be.

Laptop

Do not buy

Does not meet spec Do not buy

Do not need

Buy

Need
Cost < $1000

Do not buy

Cost ≥ $1000

Meets spec

Figure 3: A third example of a decision
tree with a different ordering and a
continuous variable.

The C4.5 Algorithm

Perhaps the most common method for learning a decision tree
is the C4.5 algorithm developed by Ross Quinlan. This method
performs a recursive partioning of the dataset in the following way
(a simplified version):

1. Start with a dataset D = {xi, ti}N
i=1 with binary target variables

ti = {−1, 1}. Each data point xi is a vector of P features.

2. Determine which feature is best able to split the dataset accord-
ing to its target values and determine the value on which to split.

3. Split the dataset into two according to the decision learned in
the previous step.

4. Recurse on the two partitioned subsets.

5. Stop recursing if a subset contains samples from only one of the
target classes

lecture 12: decision trees 3

The key issue therefore becomes how to split the dataset into
two, and how to determine which feature is the best one to split
on next. A natural way to make this decision is to choose these
factor according to how much they improve our ability to make
a decision. A clear decision can be made when each of the two
splits contains only data from one of the two target variable classes,
so we see that the split has to be chosen to make the two parts as
homogeneous as possible – we ideally want to put all samples with
one target value in one group, and all those with the other target
value in the other group. The choice of feature on which to split is
therefore the one that acheives the greatest homogeneity in each
half of the split.

The criterion typically used for splitting is the information gain
following a split, which is related to the entropy of the dataset. En-
tropy is a concept that originated in statistical thermodynamics as
a way to reason about the properties of large collections of atom-
s/molecules. It is a rough measure of the amount of disorder in
a system and its definition, S = k ln w (where k is Boltzmann’s
constant) reflects this. It states that the entropy S is the log of the
number of possible microscopic configurations w that could give
rise to the same macroscopic properties. A classical example of this
is to consider a box full of some sort of gas. There are many pos-
sible arrrangements of the molecules in which they are uniformly
distributed in the box, and these will be indistinguishable to us
from the outside. This state has a high entropy.

It is also possible (althought very unlikely) that the atoms could
end up all packed very close together in one corner of the box.
There are very few ways in which this can be done (which is why
it is unlikely) and this is therefore a low entropy state. The parallel
with our current situation is reasonably obvious: we need to

• Split the data on each feature to minimise the entropy in the two
branches (make them as homogeneous as possible)

• Choose the feature that minimises the total entropy

In information theory, entropy is defined in a slightly different
way to the thermodynamic entropy. The analogue of w is the prob-
ability density pi for discrete outcomes i, and in terms of which the
information entropy is defined as

S = −∑
i

p(i) ln p(i) (1)

This definition tells us how much information an event contains:
unlikely events (small p) give a large value of S and carry more
information than highly likely events. To understand this, consider
the example of a single binary variable for which p(0) = p and
p(1) = 1 − p. The entropy of this variable as a function of p is
S = −p ln p − (1 − p) ln(1 − p) which we plot in Figure 4. We
observe that in the case where the output is entirely predictable
(p = 0 or p = 1) then the entropy is zero: there is no information

lecture 12: decision trees 4

because the variable is entirely predictable. The entropy is at its
highest when p = 0.5 and the variable is at its most unpredictable.

0.0 0.5 1.0
p

0.2

0.4

0.6

S(
p)

Figure 4: The entropy of a binary
variable for which p(0) = p and
p(1) = 1− p.

In the context of splitting a dataset into two homogeneous parts,
we observe that a dataset that is homogeneous has a low entropy
(there are no surprising events). It therefore follows that we should
choose to split the data in a way that provides the biggest reduction
in entropy. This is equivalently referred to as the biggest information
gain. We therefore construct decision trees in a greedy manner, by
ordering the decisions by the amount of information that is gained
at each split.

Since lowering entropy implies gaining information, the infor-
mation gain in splitting the data can be is defined as the difference
between the entropy of the parent P and the entropy of the children
C = {ci}. Given an n-way split of the sample, we write this as the
entropy of the parent minus the weighted (by relative probabilities)
sum of the children’s entropy:

G(P, C) = S(P)− S(C) (2)

−∑
i∈P

p(i) ln p(i)− ∑
c∈C

p(c)∑
i∈c
−p(i|c) ln p(i|c) (3)

Let us do a concrete example of this, using our laptop-buying
example. A sample dataset is given in Table 1. Let us begin to con-
struct the decision tree.

N Need Afford Spec Buy

1 T F T F
2 F T F F
3 T F T T
4 T F T T
5 F T F F
6 T T T T
7 F F F F
8 T T T T
9 F T T T

10 T F F F
Table 1: Table for outcomes for the
shoe-buying example.

Our first choice is to determine on which variable we should
split first. We need to first compute the entropy of the whole
dataset. There are ten samples from which the outcome was true
on four occasions and false on six. The entropy of the parent is
therefore

S(P) = −0.4 ln 0.4− 0.6 ln 0.6 = 0.673 (4)

Let us split the dataset on each of the three independent vari-
ables. First, we split on “Need”, dividing the dataset into two
groups: six samples for which “Need” is true, and four for which
it is false. Of the six “true’s”, four lead to “buy” and two to “not
buy”. Of the four false’s, none lead to “buy” and four lead to “not
buy”. The children’s entropy is therefore

S(C) = ∑
c∈C

p(c)∑
i∈c
−p(i|c) ln p(i|c) (5)

=

[
p(Need)× ∑

i∈Need
−pi ln pi

]
+

[
p(¬Need)× ∑

i∈¬Need
−pi ln pi

]
(6)

= 0.6×
(
−4

6
ln

4
6
− 2

6
ln

2
6

)
+ 0.4× (−1 ln 1− 0 ln 0) (7)

= 0.382 (8)

The information gained is therefore 0.673− 0.382 = 0.291. Let us
do this for the other variables.

For Affordability, the split is 5T, 5F. The 5T lead to 2T, 3F out-
comes; the 5F lead to 2T, 3F outcomes. The children’s entropy is

lecture 12: decision trees 5

therefore

S(C) = 0.5×
(
−2

5
ln

2
5
− 3

5
ln

3
5

)
+ 0.5×

(
−2

5
ln

2
5
− 3

5
ln

3
5

)
(9)

= 0.5× 0.673 + 0.5× 0.673 = 0.673 (10)

No information has been gained. We should not split on this vari-
able.

For specification, the split is 6T, 4F. The 6T give 5T, 1F outcomes;
the 4F give 0T, 4F outcomes.

S(C) = 0.6×
(
−5

6
ln

5
6
− 1

6
ln

1
6

)
+ 0.4× (−1 ln 1− 0 ln 0) = 0.270 + 0 = 0.270

(11)

The information gain here is therefore 0.673− 0.270 = 0.403.
The best inital predictor for the outcome is therefore whether

the laptop has the right specification. This should therefore be the
first split in the tree. Subsequent partionings of the data follow the
same principle and the tree can be constructed recursively. These
arguments can be generalised to deal with continuous variables
although we will not consider that here. The aim has been to un-
derstand the general principles by which these tree are constructed.

Decision trees are easy to understand and their predictions are
very interpretable. For a given sample, each node of the tree can
be interrogated to understand why that branch was taken. This
makes decision trees an appealing option for situations where each
decision needs to be accompanied by a rationale for that decision.
However, for a majority of applications, they suffer from a seri-
ous problem: they have a very strong tendency to overfit and to
change substantially with different data: they are low bias,high
variance. A tree that contains enough features and therefore has a
high depth can essentially exactly fit its training date, but will often
break down quite spectacularly on unseen data. It is therefore very
uncommon for single decision trees to be used in isolation. The ex-
ception to this would be in situations where the depth of the trees is
very limited because insufficient features are available.

One very common way in which the low-bias, high-variance
tendency of decision trees can be overcome is to use many of them
together, in what is known as an ensemble. Next lecture, you will be
introduced to two different ensemble-based methods: boosting, and
random forests.

	Decision Trees

