
Algorithms & Complexity: Lecture 11: Divide

and Conquer

Sam Barrett

March 17, 2021

Divide and conquer is a very natural and useful algorithmic technique.
It breaks a problem down in to smaller subproblems which can be solved

recursively and recombined into a final solution.
Abstractly they can be thought as following the steps:

1. Divide

decompose the problem into smaller subproblems

2. Conquer

Solve the smaller subproblems, usually done recursively

3. Combine

Recombine the solutions to the subproblems into the final solution we
return.

1 MergeSort algorithm

Problem 1 (MergeSort) Given a list of n numbers, we want to sort them
in ascending order.

As specified earlier, we must first divide the problem into smaller problems.
We will start by dividing in two (as it is the most trivial way)

6,8,1,4,9,2,3

6,8,1

1,6,8

4,9,2,3

2,3,4,9

1,2,3,4,6,8,9

1



Above you can see a very naive approach to merge sort. We split the initial
problem in half, sort the halves and recombine.

Recombination in this example is done as follows:

1. Initialise pointers p1, p2 at the start of both sub-arrays

2. If A1[p1] < A2[p2] then append A1[p1] to the return array and move the
p1 to the right, otherwise add A2[p2] and move p2 to the right

3. repeat until both sub-arrays are empty (pointers cannot move to the right)

A more formal definition for merge sort is:

Algorithm 1: MergeSort(A)

1 Divide the given list A on n numbers into two lists B and C of equal
size

2 Let B′ = MERGESORT(B) and B′ = {b1 < b2 < . . . < bn/2}
3 Let C ′ = MERGESORT(C) and C ′ = {c1 < c2 < . . . < cn/2}
4 Initialise i = 1, j = 1, k = 1
5 Initialise D to be an empty array
6 while i 6= n/2 ∩ j 6= n/2 do
7 if bi < cj then
8 Set dk = bi
9 k, i + +

10 else
11 Set dk = cj
12 k, j + +

13 end

14 end
15 If one of the lists becomes empty, append the remainder of the other

list to D
16 return D

Clearly this algorithm does not simply divide the array once, it will divide
recursively until the arrays are a single element in length, relying on the recom-
bination process to actually sort the array.

The time needed to recombine B′ and C ′ to obtain D is O(n).
Therefore, the recurrence is T (n) ≤ 2 · T (n/2) + O(n).
We can show (but won’t) that T (n) = O(n log n) satisfied this recurrence.

2 Solving recurrences

At the end of the merge sort section we saw that we formulated a recurrence to
describe the complexity of our divide and conquer algorithms.

There are two main methods for solving these recurrences.

2



2.1 Method 1: Unrolling the recurrence

In this method we open up the recurrence step-by-step. It does not require any
knowledge of the final result of the process.

We start by writing our recurrence for some constant value c:

T (n) ≤ 2 · T (n/2) + cn, ∀n > 2

Base Case: T (2) ≤ c

cn

cn/2 cn/2

cn/4 cn/4 cn/4 cn/4

Level 0: cn

Level 1: cn/2 + cn/2 = cn total

Level 2: 4(cn/4) = cn total

Note that at each step/level we have exactly cn running time. This is our
pattern, and would continue until we reach a level in which each node is of size
2 in which case we can use our base case.

We must now sum over all levels of the recursion. We will have log2 n levels
as our base case is that n = 2. It will take log2 n splits until we reach sub-arrays
of size 2.

We can therefore say that as we have log2 n levels and each level has cn
running time, that our overall running time is cn · log2 n.

We can formalise this process as follows:

1. Write the recurrence explicitly for some constant c

T (n) ≤ 2 · T (n/2) + cn

2. Construct our base case

T (2) ≤ c

3. Analyse the first few levels

Level 0 takes cn time, and delegates two recursive calls of size n/2

Level 1 takes c(n/2)+c(n/2) time and delegates four recursive calls of size
n/4

3



4. Identify a pattern

The number of subproblems doubles at each level

The size of each subproblem halves at each level

Level j has 2j subproblems each having size n/2j

So level j takes a total of 2j · (c · (n/2j)) = cn time and delegates some
tasks to the next level

5. Sum up over all levels of the recursion

There are O(log2 n) levels of the recursion

Each level requires a running time of cn

T (n) = cn · log2(n) = O(n · log2n)

2.2 Verifying by substitution in the recurrence

This works well if you already have a guess for the running time. You can then
check by induction whether your guess satisfies the recurrence.

• Base Case: n = 2

T (2) ≤ c ≤ cn log n

• Inductive Hypothesis

For each 2 ≤ m ≤ n we have T (m) ≤ cm · logm

• Inductive step

T (n) ≤ 2T (n/2) + cn (by the recurrence)

≤ 2c · (n/2) · log(n/2) + cn (by inductive hypothesis since n/2 < n)

= cn(log n− 1) + cn (since log(n/2) = log n− 1)

= cn · log n

NOTE: we have here verified that T (n) = cn · log n is one possible
solution for this recurrence, unlike the unrolling method, this method
may lead to verifying that a much higher running time is correct.

4


