
Algorithms & Complexity: Lecture 11: Divide

and Conquer II

Sam Barrett

March 17, 2021

1 Counting number of inversions

Problem 1 (Inversion)
Given an array of n pairwise disjoint (unique) numbers a1, a2, . . . , an
Two numbers ai and aj form an inversion if i < j but ai > aj

The number of inversions is a measure of the sortedness of an array.
The naive approach to solving this requires O(n2) time, as it checks if each

of the

(
n
2

)
pairs is an inversion or not.

We can instead construct an algorithm similar to MergeSort:

1. Divide

Divide the list L into two equal sections L1 and L2

2. Conquer

Count the number of inversions within L1 and L2

3. Combine

Count the number of inversions where one number is from L1 and the
other is from L2

Analysis:
Let T (n) be the time needed to count the number of inversions from a given

list of n numbers.

• The divide step requires O(1) time

• The Conquer step requires 2 · T (n/2) steps

• The combine step requires O(n2) steps as |L1| = n/2 = |L2|

• Our recurrence is T (n) ≤ 2 · T (n/2) + O(n2)

1

This approach doesn’t appear to be any better than our naive O(n2) ap-
proach. Can we improve the combination step?

If we can get the combination step down to O(n) time the our entire proce-
dure can be reduced to the complexity of MergeSort (T (n) = O(n · log n))

1. Divide

Divide the list L into two equal sections L1 and L2

2. Conquer

Sort and count the number of inversions within L1 and L2

3. Combine

We can assume that both lists are sorted Count the number of inversions
where one number is from L1 and the other is from L2

Analysis:

• The divide step requires O(1) time

• The Conquer step requires 2 · T (n/2) steps

• The combine step:

It can be shown that this step now only needs O(n) time as both lists are
sorted

Algorithm 1: Combine(L1, L2)

1 Input: Two sorted lists L1, L2 of length n/2 each
2 Let L1 = {b1 < b2 < . . . < bn/2}
3 Let L2 = {c1 < c2 < . . . < cn/2}
4 Initialise i, j = 1
5 Initialise c = 0 ; // counter to maintain number of inversions

6 while i 6= n/2 ∩ j 6= n/2 do
; // Even if one list becomes empty, we can stop

7 if bi > cj then
8 j + + c+ = (n/2)− i + 1 ; // All numbers in L1 after ai

are > bj
9 else

; // In this case we have bi < cj
10 i + +

11 end

12 end
13 return c

Running time:

– In each step, either i or j increases

2

– The while loop ends when one of the lists becomes empty

– Hence, the total running time is |L1|+ |L2| = O(n)

• Our recurrence is T (n) ≤ 2 · T (n/2) + O(n)

Same as for MergeSort and we have solved this recurrence to T (n) =
O(n log n)

We can now construct an algorithm Sort-and-Count which takes a list L
and returns the number of inversions in L and the sorted version of L.

Algorithm 2: Sort-and-Count(L)

1 Divide L into two lists L1 and L2

2 Let (r1, L
′
1) = Sort-and-Count(L1)

3 Let (r2, L
′
2) = Sort-and-Count(L2)

4 Let (c, L′) be the output of Combine(L′
1, L

′
2)

5 return c + r1 + r2
6 return L′

2 Faster integer multiplication

We will make two assumptions:

1. Multiplying 2 bits can be done in constant time

2. Adding 2 bits can be done in constant time

When we consider the process of long multiplication, we will split the prob-
lem of, for example, 12× 13 into 12× 10 and 12× 3 and combine these results.
Intuitively we can see that this process is similar to that which we have been
employing to create divide and conquer algorithms.

In this formulation (for multiplying two binary strings of length n) we need
to add O(n) binary strings where each binary string takes O(n) time to compute.
This leads to a total running time of O(n2).

2.1 Attempt 1

Let x1, x0 be the first and last n/2 bits respectively.
We can therefore say that: x = x0 + 2n/2 ·x1, where we also know that both

x0,1 have length n/2
Let y1, y0 be the first and last n/2 bits respectively.
We can therefore say that: y = y0 + 2n/2 · y1, where we also know that both

y0,1 have length n/2
We can then also see that:

3

x · y = (x0 + 2n/2 · x1) · (y0 + 2n/2 · y1)

= x0y0 + 2n/2 · (x1y0 + x0y1) + 2n · x1y1

We therefore need to solve the following four instances of multiplication of
binary strings of length n/2 each:

• x0 and y0

• x1 and y1

• x0 and y1

• x1 and y0

Giving us the recurrence: T (n) ≤ 4·T (n/2)+O(n). We know this recurrence
solves to a running time of O(n2), no better than our naive algorithm

2.2 Attempt 2

We will require the following three quantities:

1. x0y0

2. x1y1

3. x0y1 + x1y0

We have previously shown that these can be obtained from solving four
instances of size n/2, but can we do better?

Observe:

x0y1 + x1y0 = (x1 + x0)(y1 + y0)− x1y1 − x0y0

We therefore only need to solve three instances of multiplications of binary
strings of length n/2:

1. x0 and y0

2. x1 and y1

3. (x0 + x1) and (y0 + y1)

This gives us the recurrence: T (n) = 3 · T (n/2) + O(n) which can be solved
to a time of O(nlog2 3) ≡ O(n1.59). This is an improvement over our naive and
first approach.

4

