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If we assume that P 6= NP, then it follows that no NP-hard problem has
a polytime solution. But we still want to be able to solve these problems in the
most efficient way possible.

We will now look at designing exact exponential time algorithms for NP-
hard problems as these are still preferable to brute force. (note here exact
simply means that the algorithm solves the problem exactly ).

1 Algorithms via branching

1.1 Example: Vertex Cover

Problem 1 (Vertex Cover) Given an undirected graph G = (V,E) on n
vertices and m edges, find a set X of minimum size s.t. each edge of G has
at least one endpoint in X

The brute force approach to this problem runs in 2n · nO(1) time and works
by:

• Enumerating all 2n subsets of vertex set V

• For each set X ⊆ V , check in O(|X|) time if each of the m edges has at
least one endpoint in X

We now ask ourselves: Can we design an “Can we design an (2− ε)n ·nO(1)”
time algorithms for some ε > 0?

Note we focus on minimising the 2 in 2n · nO(1) as:

lim
n→∞

(
2n > ∀k ∈ N.nk

)
Or as n gets increasingly larger, the 2n gets exponentially larger.
Our algorithm relies on the observation that there is no point adding any

vertex of degree 1 to the vertex cover. I.e. a vertex only connects to one other
vertex. In this case we lose nothing by just adding the vertex it is connected
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to. This second vertex has the possibility of being as good or better than the
degree-1 vertex.

Now we can assume that there will be no vertices of degrees < 2. We
can then say that for each vertex v of degree ≥ 2

• If we pick v then the number of vertices (remaining to be covered ) reduces
by 1

• If we do not pick v then the number of vertices reduces by at least 2+1 = 3.
This is as by not picking v all of its neighbours must now be picked and
v has at least 2 neighbours. (2 refers to the (at least) 2 neighbours of v
and the 1 refers to v being implicitly covered by selecting its neighbours)

If we define T (n) as the time needed to solve the VertexCover problem for
a graph with n vertices, we can construct the following recurrence:

T (n) ≤ T (n− 1) + T (n− 3)

Where we solve both instances: where we pick v and where we do not and
take the minimum of the two results. This gives us a total running time of
T (n− 1) + T (n− 3)

Base case:
T (2) = 1 as for the case where the graph is two vertices connected by a single

edge we select one node and have the minimum vertex cover. This requires a
single operation.

Our recurrence is what is known as a linear homogenous recurrence

• linear - terms on the RHS are raised to the power 1

• homogenous - there are no constants on the RHS

The standard method for solving such a recurrence is to set T (n) = xn and
solve for x:

• T (n) ≤ T (n− 1) + T (n− 3) 7→ xn ≤ xn−1 + xn−3

• Taking xn−3 as a common factor gives: x3 ≤ x2 + 1

• This is satisfied by ∀x ≤ 1.46557

• Therefore, we can say that 1.47n·nO(1) is an upper bound for our branching
algorithm.

2 Algorithms via Dynamic Programming

2.1 Example: Travelling salesman problem (TPS)
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Problem 2 (Travelling Salesman Problem )

• Given a set C of n cites c1, c2, . . . , cn

• A distance function dist : C × C → R≥0 which gives the distance
between every pair of cities

• We want to start at c1 and end at c1 after visiting all cities on the
way

• What order should we visit each city to minimise the total distance
we have travelled?

The brute force approach tries all n! orderings. And for each computes its
cost by summing all n values. Hence, the running time of this approach is
n! ≈

(
n
e

)n
. (Where e is the Euler constant equal to around 2.718)

2.1.1 Deriving our recurrence relation

For each S ⊆ {c2, c3, . . . , cn} and each ci ∈ S, let OPT[S, ci] be the minimum
length of a tour that starts at c1, visits all cities in S and ends at ci

Base Case: when |S| = 1; for each i ≥ 2 we have OPT[{ci}, ci] = dist(c1, ci)
Now suppose that |S| > 1 and we want to compute OPT[S, ci] for some ci ∈ S.

• Let cj be the last city visited before ending at ci

• cj must be in S\{ci}

• Looking at all possibilities gives the following recurrence:

OPT[S, ci] = min
cj∈(S\{ci})

OPT[S\{ci}, cj ] + dist(cj , ci)

Using this recurrence we can construct the algorithm ?? and analyse its
running time:

The number of entries in our table OPT is O(2n · n) as we maintain an entry
OPT[S, ci] for each S ⊆ {c2, . . . , cn} and each ci ∈ S

To compute OPT[S, ci] we take the minimum of |S| numbers. To do this we
look up |S| − 1 entries and do |S| − 1 addition operations. Giving an overall
running time on O(n) since |S| ≤ n− 1
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Algorithm 1: Travelling Salesman Problem (TSP)

Input: A set C = {c1, c2, . . . , cn} of n cities and a distance function
dist : C × C → R≥0

Output: The value/distance of a tour which minimises the total
distance travelled when starting and ending at c1, while
visiting all cities from C

1 for i = 2 : n do
2 OPT[{ci}, ci] = dist(c1, ci)
3 end
4 for k = 2 : n do
5 for S ⊆ {c2, c3, . . . , cn−1, cn} with |S| = k do
6 OPT[S, ci] = min

cjin(S\{ci})
OPT[S\{ci}, cj ] + dist(cj , ci)

7 end
8 k++

9 end
10 return min

2≤i≤n
OPT[{c2, c3, . . . , cn−−1, cn}, ci] + dist(ci, c1)

2.2 Set Cover problem

Problem 3 (Set Cover problem) Given:

• A set U = {u1, u2, . . . , uN} of N elements

• A set S = {S1, S2, . . . , SM} of non-empty subsets of U s.t. |S| = M

Find a collection S ′ from S of minimum size s.t. the unions of sets in
S ′ covers all elements of U . We assume that the union of all sets in S
covers all elements in U

The brute force approach to this problem takes O(2M ·M ·N) time as it:

• Tries all possible 2M subsets of S

• On each subset we can check in O(M ·N) time if the union of all sets in
the subset covers all elements in U .

Each of the ≤M sets in our subset S ′ can have at most N elements each.

Can we do better than this?

2.2.1 Setting up our recurrence

For each non-empty subset X ⊆ U and each 1 ≤ j ≤ M , let OPT[X, j] be
the size of the minimum cardinality subset of {S1, S2, . . . , Sj} that covers all
elements from X

Base Case: j = 1
TODO: complete this along with formative assignment (6?)
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