
0.1 Introduction

0.1.1 Non-uniform models

The difference between uniform and non-uniform models of computation is
that for uniform models, we will have a single program which can handle inputs
of any length. Whereas, for non-uniform models, we have a different program
for each input length n ∈ N

0.1.2 CNFs

A CNF formula is a logical formula which fits the form:∧
i

∨
j

lij

Where each lij is a literal, i.e. either x or ¬x for some variable x.
We define computation by CNF as follows:

Definition 1 (Computation by CNF) Given a Boolean function, f : {0, 1}n →
{0, 1}, we say that f is computed by a CNF, A(x1, . . . , xn) if, for any
~b ∈ {0, 1}n, we have:

A(b1, . . . , bn) = f(b1, . . . , bn)

I.e. for any assignment of A, f produces the same result.

Theorem 1 We can show that for every Boolean function, f : 0, 1n → 0, 1
there is a CNF Af which computes it.

We show this as follows:

Proof 1 Let F := {~b ∈ {0, 1}n : f(~b) = 0} For b ∈ {0, 1} write:

b ? x :=

{
x b = 0

¬x b = 1

and define:

Af :=
∧
~b∈F

n∨
i=1

bi ? xi

Recall that we link Boolean functions, f : 0, 1n → 0, 1 with languages ⊆
{0, 1}n.

We say that a language L ⊆ {0, 1}∗ is computed by a family {An}∞n=1 of
CNFs if, for each n ∈ N, An is a CNF computing L ∩ {0, 1}n.

With this we can define our first non-uniform class:

1

Definition 2 The size of a CNF A, |A| is the number of literals occur-
rences it contains.

CNFpoly is the class of languages computed by polynomially sized fam-
ilies of CNFs

Undecidability

Proposition 1 CNFpoly contains undecidable languages

Proof 2 Let H ⊆ N be the set of natural numbers coding for halting Turing
Machines (excluding inputs). Define the following sequence of CNFs:

An :=

{
x1 ∨ ¬x1 n ∈ H

x1 ∧ ¬x1 n /∈ H

An evaluates to 1 on an input ∈ {0, 1}n iff the nth TM halts.
The induced language ⊆ {0, 1}∗ is therefore clearly undecidable by re-

duction to H.

This is the case as if H ⊆ N, H ⊆ ∗. This shows that on the set of all Lan-
guages, and therefore all Boolean functions in CNFpoly, there exist undecidable
languages.

0.1.3 Boolean Circuits: Basics

A Boolean circuit is similar to a formula, but we can reuse sub-formulas. They
are represented as a well-founded diagram built from Boolean gates.

Boolean formulae which we have seen earlier can be though of as a special
class of circuits whose underlying graphs are trees.

Definition 3 (Boolean Circuit) An n-input Boolean circuit C is a di-
rected acylic graph with:

• n sources, x1, . . . , xn

These are visualised as vertices with no incoming edges (leaves in a
tree)

• one sink s

A vertex with no outgoing edges (root in a tree)

• A labelling from nonsource vertices to the set of gates, by default,
{¬,∧,∨}

• Vertices labelled ¬ are said to have fan-in 1, i.e. 1 incoming edges

• Vertices labelled ∨ or ∧ have fan-in 2

2

The size of C is written |C|, and is the number of vertices.

Computation of Boolean Circuits Given a dag C and an assignment b :
{x1, . . . , xn} → {0, 1} we can define a value b(v) at a node v by induction over
the structure of C:

• b(xi), is already defined as these are the input nodes

• any nonsource node labelled ¬ with an incoming edge from node u can be
said to have a value b(v) := 1− b(u)

• any nonsource node labelled with ∨, with incoming edges from u0 and u1

can be said to have a value b(v) := max(b(u0), b(u1)

• Nonsource nodes labelled ∧ with inputs from nodes u0, u1 has a value
b(v) := min(b(u0), b(u1))

With the above definitions, we can say that the value of b(C) is the same as
b(s).

We can show that this definition of outputs allows us to construct a polytime
algorithm for evaluating circuits.

Proposition 2 (We can evaluate a boolean circuit C in polynomial time)
The set of pairs (C, b) where

• C is an n input circuit and

• b : 0, 1n → 0, 1 s.t. b(C) = 1

is in P

Depth of a Circuit The depth of a circuit is C is the length of the longest
path, i.e. the maximum number of edges from a source node to s, in its under-
lying graph.

The depth of a node is the longest path from a source node to that node.
The inductive definition of circuit depth is the same as for the structural

induction seen earlier.

Proposition 3 If L ⊆ {0, 1}n is computed by a circuit C of depth d, then
it is also computed by a formula of size < 2d.

Proof 3 For a node v of C, define the formula F (v) by induction on the
depth of v.

• F (xi) is just the formula xi, this has size 1 (1 < 2 = 21)

• If v of depth e is labelled with ¬ with an incoming edge from node u
(of depth < e)m then F (v) := ¬F (u) (of size < 2e−1 + 1,∴< 2e)

3

• If v of depth e is labelled ? ∈ {∧,∨} with incoming edges from u0, u1

(both of depth < e), then F (v) := (F (u0) ? F (u1)) which has size
< 2e−1 + 2e−1 + 1 which is < 2e

We have now constructed F (s) which is a formula computing L in size
< 2d

We say that a language L ⊆ {0, 1}∗ is computed by a circuit family {Cn}∞n=1

if, for each n ∈ N, Cn is an n-input circuit computing L ∩ {0, 1}n
For f : N→ N we define:

• SIZE(f(n)) as the set of languages L ⊆ {0, 1}∗ computed by circuits of
size ≤ f(n)

• DEPTH(f(n)) as the set of languages L ⊆ {0, 1}∗ computed by circuits
of depth ≤ f(n)

The class P\poly is the class of languages computed by polynomial-size
circuit families, i.e.:

P\poly :=

∞⋃
c=1

SIZE(nc)

4

