
Algorithms & Complexity: Lecture 2, Time and

space complexity

Sam Barrett

May 19, 2021

1 Upper and lower bounds

A simple set of examples for upper and lower bounds could be:

• Upper bound: I can clear my flat in a couple of days at most.

• Lower bound: It will take me at least a day to clear my flat.

1.1 Upper bound notation

Note: this notation is not only used for time complexity.
Say that we have two functions: f : N→ N and g : N→ N.
We say that f(n) is O(g(n)) if f is no bigger than g up to a constant factor.

Or more precisely, if there are numbers c and no such that, ∀n, n ≥ n0 we have
f(n) ≤ c · g(n).

Example

f(n) ≤ 15n3,∀n ≥ 1000

In this situation we can say that f(n) is O(n3).
We have:

• c = 15

• n0 = 1000

• g(n) = n3

We say that f(n) is o(g(n)) if f is not as big as g, even up to any constant
factor. Or more precisely, if, for any ε > 0, there is n0 such that, ∀n ≥ n0 we
have f(n) ≤ ε · g(n)

We can therefore see, if f(n) is o(g(n)) then f(n) is always also O(g(n)) this
can be proven if you take c to be 1.

1

1.1.1 Examples

Example 1

5n2 + 17n+ 3 is O(n2) and o(n3) and O(n3) but not o(n2).

• This is the case as we it is clearly no bigger than O(n2) (up to a constant
factor) as it contains a quadratic term.

• It is small compared with n3 (hence o(n3)) as the highest factor again is
n2.

• It is also O(n3) as if it is no bigger than O(n2) it follows that it must also
be no bigger than O(n3).

• We cannot, however, say that it is o(n2) as it cannot be smaller than n2

due to it containing a quadratic term.

Example 2

8n log n is O(n log n) and o(n2)
We can say this as:

• our term cannot be any bigger than n log n (up to a constant factor)

• It must be smaller than n2, due to the nature of logarithms.

1.2 Lower bound notation

• We say that f(n) is Ω(g(n)) when g(n) is O(f(n))

Meaning, there c and n0 such that, ∀n ≥ n0 we have f(n) ≥ c · g(n)

• We say that f(n) is ω(g(n)) when g(n) is o(f(n))

• We say that f(n) is Θ(g(n)) when it is both O(g(n)) and Ω(g(n))

Informally we say this means: “f(n) and g(n) are the same, up to a
constant factor”

2 Time complexity

2.1 Running time for a machine M

The running time of a machine M is the time taken from the input state, where
x sits on the input tape and the other tapes are blank, to reach the halt state
(qhalt).

For any number n, we define WTM (n) to be the worst case running time for
an input of length n. For example,

2

Input Running time

00 15
01 23
10 7
11 12

Here WTM (2) = 23. If we were to say that WTM (n) is O(n2) we are saying
that there are numbers n0 and C such that, ∀n ≥ n0, the running time is ≤ Cn2.

2.2 DTIME classes

DTIME(n2) is a complexity class, a complexity class can be thought of as a
set of decision problems.

A decision problem, f : {0, 1}∗ → {0, 1} is in DTIME(n2) when there is
some machine (of any sized alphabet or number of tapes) that decides it (f)
and has worst case running time in O(n2).

2.2.1 Example: palindromes

We can again define our set PAL of all palindromic bitstrings with a boolean
function f : {0, 1}∗ → {0, 1}.

Given we have a machine A−B which utilises 3 tapes to decide palindromicity
and has worst case running time O(n). We can therefore say that PAL is in
DTIME(n).

Can this be improved upon?
No! This can be trivially explained as any solution to palindromicity must

at least read the input string of length n, therefore there must be at least n
steps to the computation, leading to a best case running time in Ω(n).

2.3 Polynomial time

We can define the complexity (super) class of polynomial time decision
problems as:

P
def
=

⋃
k≥1

DTIME(nk)

From this definition, you can see that any decision problem in {DTIME(nk)}∞k=0

is also in P

2.3.1 Robustness

Is this definition robust?

• Converting a large alphabet into our default alphabet ({B,�, 0, 1}) only
multiplies the running time by a constant factor

3

• Converting a n tape machine to a 3,2 or 1 tape machine squares the
running time. This is more significant

• Converting a machine whose tapes are infinite in both directions to a ma-
chine whose tapes are infinite in only one direction multiplies the running
time by a constant factor

• Converting a machine whose tapes are 2 dimensional to a machine whose
tapes are one dimensional squares the running time. This is more
significant.

In all of the cases listed above, the notion of polynomial time that you are
left with is the same. The same class of decision problems are solvable in
polynomial time.

Note: this is true for polynomial time (as defined above) but is
not the case for linear or quadratic time

For example, PAL can be solved in O(n) on a multitape Turing machine but
is Θ(n2) on a single tape machine.

2.3.2 Size of input

Another common concern is that our data may be represented as a bitstring in
more than one way. However, in practical examples, the representations differ
by a constant factor leading to polynomial time being the same.

2.4 Exponential time

We can define the complexity class of exponential time decision problems
as:

EXP
def
=

⋃
k≥1

DTIME(2n
k

)

Therefore, any decision problem in DTIME(25n
17

) is in EXP and so on.
Also clearly P ⊆ EXP

3 Space complexity

Although we often regard time complexity as being the most important, there
are many cases in which we need to worry about space complexity as well.

3.1 Space usage of a machine M

The space usage for an input x is the number of cells on the work tapes that
are non-blank at some point during execution.

We ignore blank cells as at any point in computation there are
infinitely many of these

4

For any number n we define WSM (n) to be the worst case space usage for an
input of length n.

For example:

Input Space usage

00 5
01 12
10 9
11 9

Here WSM (2) = 12. Saying that WSM (n) is O(n2) means that there are
numbers n0 and C such that, ∀n ≥ n0, the space usage is ≤ Cn2.

Example execution
Input tape:

B 1 0 1 1

A key point about the calculation of space usage is that we do not count
the number of non-blank cells on the input tape, only on the work tapes.

Work tape 1:

B 1 0 1 1 1 1

Work tape 2:

B 1 0 1 1 1

The space usage above would be 11.

3.2 SPACE complexity class

SPACE(n2) is a complexity class and a decision problem f : {0, 1}∗ → {0, 1} is
in this space when there is some machine (with any size of alphabet or number
of tapes) that decides it (f) and has a worst case space usage in O(n2)

3.3 L and PSPACE

We can now define logarithmic space (L) which defines the set of things that
can be computed with a machine using a logarithmic number of cells

Note: this relies on the fact that we do not count the number of
cells on the input tape. This is because if we were to count the input tape
there would be at least n cells used and n > log n, similarly to how we cannot
have PAL solved in less than linear time.

L
def
= SPACE(log n)

5

We can also define polynomial space PSPACE

PSPACE
def
=

⋃
k≥1

SPACE(nk)

It is also clear that L ⊆ PSPACE

3.3.1 Robustness

Is this robust?
Yes, it is in fact more simple than with time.

• Converting a large alphabet into our default alphabet ({B,�, 0, 1}) only
multiplies the space usage by a constant factor

• Converting a n tape machine to a 3,2 or 1 tape machine multiplies space
usage by a constant factor.

• Converting a machine whose tapes are infinite in both directions to a
machine whose tapes are infinite in only one direction multiplies the space
usage by a constant factor

• Converting a machine whose tapes are 2 dimensional to a machine whose
tapes are one dimensional multiplies space usage by a constant factor.

In all of these cases, logarithmic space does not depend on the model.

3.4 Space vs time

We can show that in all cases, space complexity is less or equal to time com-
plexity.

We can prove by example that P ⊆ PSPACE:

• Let M be a machine with 5 work tapes that, for any input of length
n ≥ 1000, has a running time of ≤ 18n3 steps (a poly-time machine).

• For such an input, the space used is at most 5 + 5× 18n3

This is true as 5 cells are non-blank initially and at most 5 more cells per
step of execution (5× steps) =⇒ 5 + (5× 18n3)

We can also show that, in all cases, time is less than or equal to exponentiated
space. The following is a proof of L ⊆ P

• Let M be a machine with 5 work tapes, 74 states 13 symbols and it
eventually halts, that, for any input of length n ≥ 1000 has a space usage
of ≤ 18 log n cells

6

• For such an input, the number of configurations is at most

74× 1318 logn × (18 log n)5 × (n+ 2)

Where a configuration tells us everything about the machine at a given
point in execution

– the state

– what is written on each work tape

– where the head is on each work tape

– where the head is on the input tape

and

– 74 is the number of states in which the following apply

– 1318 logn is the number of possible symbols in each of the maximum
number of memory cells

– (18 log n)5 represents all the possible head locations over the 5 tapes

– On the input tape we have n + 2 cells in use. This is due to it
containing the start symbol B, n bits and a single blank cell.

We can also see that this number of configurations in bounded by a poly-
nomial as its constituent parts are bounded by polynomials (log etc.).

The execution time cannot be greater than this because that would mean
some configuration is repeated, causing an infinite loop. This is the case
as if we reach the same configuration for a second time, there is nothing
to prevent it from simply repeating everything it did subsequent to the
last time it was in that configuration, thus looping. This cannot be the
case as we have assumed our machine M to halt.

Therefore, if the space usage is logarithmic, the running time is polynomial.
The same argument can be made to show that if we have something in

polynomial space it must be in exponential time. To construct this proof
simply replace the log n in the above proof with a polynomial.

4 Nondeterministic time complexity

A simple definition of the complexity class NP is

Definition 1 (NP)
Problems for which checking a solution is easy

There are two methods for formally defining NP:

1. using certificates

2. using nondeterministic Turing machines.

7

4.1 Example: Sudoku

Let SUD be the set of solvable n-Sudoku puzzles, where n refers to the dimension
of the grids.

Given a Sudoku puzzle x, a solution certifies that x ∈ SUD

The size of a solution is polynomial in |x| (the length of x). The time taken
to check a candidate solution is also polynomial in |x|

4.2 Defining NP using certificates

Definition 2 (NP) A language L is said to be in NP if there is a polynomial-
time machine for checking polynomially-sized certificates of L.

Or, more precisely:
If there is a polynomial p, which gives the size of a candidate certificate)

and a polynomial-time machine (for checking a candidate certificate) M
such that, ∀x ∈ {0, 1}∗(where x is a bitstring representation of a Sudoku
puzzle), the following are equivalent:

• x ∈ L

• There is some bitstring u (a solution to the puzzle) of length p|x| such
that, M〈x, u〉 = 1.

Here we say that u certifies the fact that x ∈ L

Note above, all text in parenthesis is not a part of the definition

4.3 Nondeterministic Turing machine

A nondeterministic Turing machine is similar to a Turing machine except
for:

• it has 2 transition functions: δ0 and δ1

• besides having a halting state qhalt it also has an accepting state qaccept

It starts in the initial state qstart, the same as a conventional Turing machine.
At each step it follows either δ0 or δ1. Once the machine’s state is qaccept or
qhalt, no further transition takes place.

When we have a nondeterministic Turing machine we need to be more careful
when talking about the worst-case time complexity. For example:

Input Running time

00 15, 7, 3, 9
01 6, 23
10 7, 11, 5, 11, 8
11 12, 3, 4, 3, 12

Here WTM (2) = 23 and the machine is polynomial-time if WTM is O(nk) for
some k ≥ 1

8

4.4 Defining NP using nondeterministic Turing machines

A language L is in NP when there’s a polynomial-time nondeterministic ma-
chine M such that, for ∀x ∈ {0, 1}∗, the following are equivalent:

• x ∈ L, x is in the language L.

• When M is executed with input x, there’s some sequence of choices that
leads to qaccept

4.4.1 Example: SUD

In the case of n-Sudoku, given a Sudoku puzzle x, the nondeterministic Turing
machine does the following:

1. begins by copying x to the work tape.

2. Then it non-deterministically fills each blank with a digit. This stage
takes time polynomial in |x|

3. It goes on to check whether the completed grid is valid. This step (and
sub steps) also takes time polynomial in |x|

(a) If it is, it goes to qaccept

(b) if it is not, it goes to state qhalt.

4.5 Equivalence of definitions

Our two definitions of NP are equivalent.

4.6 Is NP = P?

Clearly P ⊆ NP. This is the case trivially because any deterministic Turing
machine is also a nondeterministic Turing machine by simply setting the ac-
cepting state to be the same as the halting state, and both transition functions
to be the same.

It is an open problem as to whether P = NP. The currently supported
hypothesis is no, P 6= NP. If the answer is yes, then there is a polynomial time
algorithm for deciding whether an n-Sudoku puzzle is solvable.

It follows that there is a polynomial time algorithm that, given a solvable
n-Sudoku puzzle, finds a solution. This is by testing all possible digits for each
blank space.

5 Nondeterministic space complexity

Given a nondeterministic Turing machine, what does it mean to be in non-
deterministic polynomial space complexity?

9

Let M be a nondeterministic Turing machine. It is in polynomial-space if
WSM is O(nk) for some k ≥ 1.

The worst case space complexity is polynomial, therefore, NPSPACE is the
class of languages that can be decided by a polynomial-space nondeterministic
Turing machine. This is the same principal as we saw in our second definition
of NP in Section 4.4.

The same as P ⊆ NP, PSPACE ⊆ NPSPACE.

5.1 Savitch’s theorem

Using a special case of Savitch’s theorem, we show PSPACE = NPSPACE
Suppose that M is a nondeterministic Turing machine, and for an input size

n, the space usage is polynomial in n
Then the length of a configuration (as defined earlier) is also polynomial in

n.
Let us say that, for n ≥ 1000, a configuration has length at most 7n18.
Consider the configuration (directed) graph, which shows all ≤ 27n

18

differ-
ent configurations and the transitions between them. Each configuration has at
most 2 next configurations.

With this graph, we want to, using a space-efficient algorithm, work out if
there’s a path from the start configuration to any accepting configuration. If
such a path exists we know that the input is accepted.

How do we find this path space-efficiently?

5.1.1 Finding a path space-efficiently

To answer this question, we generalise.
Given nodes s and t and a number k, how much space do we use when

deciding whether there is a path of length ≤ 2k from s to t ? We will refer to
this result as D(k).

We will argue, by induction, that D(k) ≤ k × 7n18.
To do this we check, for each configuration t, whether t is accepting and

whether there is a path from the start configuration to t. This requires at
most 7n18 bits to store t, and D(7n18) bits to check for the path, i.e. at most
7n18 + D(7n18)2 bits in total. This is polynomial, as is required by Savitch’s
theorem.

All that is left is to finish the inductive proof of D(k) ≤ k × 7n18.

Proof 1 Base case: If k = 0, the problem is trivial. Just check if s = t.
Inductive step: To find whether there is a path from s to t of length

≤ 2k+1, do the following:

1. For each node z, test whether there is a path from s to z of length
≤ 2k and a path from z to t of length ≤ 2k

2. By inductive hypothesis, this takes ≤ k × 7n18 cells, plus a further

10

7n18 cells to store z. Totalling ≤ (k + 1)× 7n18.

Hence, D(k + 1) ≤ (k + 1)× 7n18 therefore true ∀k

11

