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1 SAT and its variants

1.1 Propositional connectives

A basic reminder of Propositional logic and connectives:

• T (True ) and F (False ) are the propositional constants

• a∧ b is True if both a and b are True , otherwise False . Conjunction

• a ∨ b is True if either a or b is True , otherwise False . Disjunction

• ¬a is True if a is False and vice versa. Negation

• a → b is True if either a is False or b is True , but False otherwise.
Implication

Lemma 1 A propositional expression can be evaluated in linear
time. This is done using the shunting yard algorithm to translate into
postfix notation and then evaluating using a stack.

1.2 Conjunctive normal form

A formula is in CNF when it is a conjunction of disjunctions of variables and
their negations.

For example,

(u0 ∨ ū1 ∨ u2) ∧ (u1 ∨ ū2 ∨ u3) ∧ ( ¯u0 ∨ u2 ∨ ū3)︸ ︷︷ ︸
clause

Where in the above example ū is the negation of u.
The disjunctions within the formula are called clauses and the variables

are called literals
A clause can be written as u→ (v ∨ w ∨ x) rather than ū ∨ v ∨ w ∨ x
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1.2.1 3CNF formulae

A CNF formula is 3CNF when each clause has at most 3 literals
Note: any 3CNF clause can be written as an implication

1.2.2 Conversion to negation-free form

A formula is negation free when there are no occurrences of ¬ or →. However
these are still permitted in the form of negated variables which are still literals.

Every formula is equivalent to one in negation-free form. Simply push in
each negation to a literal using de Morgan’s laws:

¬(ψ ∨ ψ′) = (¬ψ) ∧ (¬ψ′)
¬(ψ ∧ ψ′) = (¬ψ) ∨ (¬ψ′)

Each push is O(n)-time, so the overall conversion is in O(n2) time.

1.2.3 Negation-free to CNF

A negation-free formula φ can be converted to a CNF formula φ′ using extra free
variables that are equisatisfiable with φ. This means that the new formula
will be satisfiable iff φ is satisfiable.

This is done via induction on φ:

• The case where φ is a literal is clear, literals are already in CNF

• The case where φ is a conjunction is clear, it is already in CNF

• What if φ is a disjunction?

For any variable c and clause φ, the formula c → φ is equivalent to the
clause c̄ ∨ φ.

Therefore, any variable c and CNF formula φ, the formula c→ φ is equiv-
alent to a CNF formula by the law:

c→ (ψ ∧ ψ′) = (c→ ψ) ∧ (c→ ψ′)

For any CNF formulas φ and φ′, the formula φ∨φ′ is equisatisfiable with:

(c ∨ c′) ∧ (c→ φ) ∧ (c′ → φ′)

Which is equivalent to a CNF formula, obtained in O(n) time. Thereby,
we have a conversion to CNF in O(n2)
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1.2.4 CNF to 3CNF

In CNF, each clause is of the form:

a→ (b0 ∨ · · · ∨ bn−1 ∨ c ∨ c′)

is equisatisfiable with:

(a→ b0 ∨ d0)

∧(d0 → b1 ∨ d1)

. . .

∧(dn−2 → bn−1 ∨ dn−1)

∧(dn−1 → c ∨ c′)

Where d0, . . . , dn−1 are fresh variables.
This gives an O(n) time conversion to 3CNF

1.3 Satisfiability

Satisfiability is the process of answering questions of the form: Over the variables
p, q, r is the formula (¬(q → p) ∧ r) ∨ (p ∧ q) satisfiable?

In this particular example, the answer is yes, in the case where p = F and
q = r = T

1.3.1 Formula-SAT

Formula-SAT is the set of all formulas that are satisfiable.
Formula-SAT is in NP, this is the case as given a formula φ, and an inter-

pretation u,

• the length of u is no longer than that of φ

• it takes linear time to test whether it is a satisfying assignment by Lemma 1.

1.3.2 SAT

SAT is the set of CNF formulae that are satisfiable. Since SAT is a special case
of Formula-SAT (which is in NP), it too is in NP

1.3.3 3SAT

3SAT is the set of 3CNF formulae that are satisfiable. Again, since it is a special
case of SAT, it too is in NP.
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2 Reductions

We often want to reduce a problem in mathematics/ Computer science to an-
other, simpler or more understood problem. Intuitively, this can be thought of in
the same way as reducing the problem of making profiteroles to the problem(s)
of making cream-filled pastries and making chocolate sauce.

Let L and L′ be languages.
A (many-to-one) reduction from L to L′ is a function f : {0, 1}∗ → {0, 1}∗

such that for any bitstring, x we have x ∈ L iff f(x) ∈ L′.
Or, more plainly, if we know how to decide membership of L′, then the

reduction enables us to decide membership of L.

2.1 Computable reductions

We write L ≤m L′ when there is a reduction from L to L′ that is computable.
From this we can see that:

• If L′ is decidable, then L is decidable

• If L is undecidable (e.g. Halting problem), then L′ is undecidable .

This is a very useful property and allows us to easily prove the deciability
or undecidability of problems without explicitly having to prove them. We will
not look any closer in this module.

2.2 Polynomial time reductions

We write L ≤P L′ when there is a reduction from L to L′ that is polynomial
time.

• If L′ is in P, then L is also in P

• If L′ is in NP, then L is also in NP

2.3 NP-Completeness

A language L is NP-hard if every language in NP has a polynomial-time
reduction to it.

Therefore, if L is in P and NP-hard then P = NP!
If L is in NP and also NP-hard, we say that it is NP-complete. These are

the hardest problems in NP.

2.3.1 Proving NP-completeness

To prove that a problem is NP-complete:

• One must show that it is in NP

• One must show that some other NP-hard problem reduces to it.
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3 The Cook-Levin theorem

Theorem 1 3SAT is NP-complete

We know that 3SAT is in NP. Therefore, to show that it is NP-complete,
we must show it to also be in NP-hard.

For any language L ∈ NP we want to give a polytime reduction from L to
3SAT.

We will approach this in order from Formula-SAT → SAT → 3SAT

3.1 Reducing to Formula-SAT

Since L is in NP there must be a nondeterministic Turing machine which decides
it.

Say that M is a NDTM for the language L, using an input tape, a work
tape and an alphabet {B,�, 0, 1} with 50 states and a running time and space
usage of at most n3, where n is the size of the input.

From this, we must convert a bitstring x of length n into a propositional
logic formula that is satisfiable iff x ∈ L.

The variables

• Let ai,j,s say that at time i, cell j of the work tape contains symbol s.
Here i, j < n3

• Let bi,j say that, at time i the input head is in position j. Here i < n3

and j < n.

• Let ci,j say that, at time i, the work head is in position j. Here i, j < n3

• Let di,q say that, at time i the current work state is q. here i < n3 and
q < 50 (as per machine definition)

The constraints

• For any time i, each cell j contains only one symbol and there is only one
current state.

• The configurations at time i and time i+ 1, and the input, are related by
the transition function.

This is stated locally, meaning if, at time i the state at time i + 1 is
determined only by adjacent states.

• At some time i < n3, the current state is qaccept.

Putting these things together gives a formula of size O(n3), It is satisfiable
iff the bitstring x is acceptable (x ∈ L).
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3.2 Reduction to SAT

By converting a formula to an equisatisfiable CNF formula in O(n2) time (See
Section 1.2.3), we show that Formula-SAT ≤P SAT.

3.3 Reduction to 3SAT

By converting a CNF formula to an equisatisfiable 3CNF formula in O(n) time
we show that SAT ≤P 3SAT

3.4 Proving NP-completeness

We previously outlined how to prove a problems is NP-complete in Section 2.3.1.
We have shown that 3SAT reduces to NP-hard thus satisfying the second point.

4 Logspace reductions

We know that L ⊆ P, i.e every decision problem that can be solved in logspace
can be solved in polynomial time.

4.1 Requirements

• We will write L ≤L L
′ when there is a logspace reduction from L to L′.

• We want the identity reduction to be logspace, i.e. L ≤L L.

• We want a composite of logspace reductions to be logspace, so that:

L ≤L L
′ ≤L L

′′ =⇒ L ≤L L
′′

• If you have two languages that are related, L ≤L L
′

then L′ ∈ L should
imply L ∈ L

• Every logspace reduction should be polytime, so that, ≤L implies ≤P .

4.2 Logspace reduction: definition

We impose the following requirements on a function f : {0, 1}∗ → {0, 1}∗:

• f must be polynomially bounded, meaning, there must be a c such
that, for every bitstring x, |f(x)| ≤ |x|c holds true.

• We can test in logarithmic space whether a particular position in the
output it within or outside of the length of f(x). Formally:

The set of pairs 〈x, i〉, s.t. i ≤ |f(x)| must be in L

• We can test whether a particular position 〈x, i〉 gives a result of 1 or not,
f(x)i = 1 must be in L. This is referred to as the bitwise problem for f .
(This is the most important condition)
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4.3 Composing logspace reductions

Suppose we have two logspace reductions f and g, then the composite function
x 7→ g(f(x)) is also logspace, we are going to show that this is the case:

To compute g(f(x))i (the ith bit of the result) using three work tapes
(A,B,C), we assume we can compute f and g using one work tape each. We
assign f work tape C and g work tape A.

We cannot use tape B as an input tape for g as this would take too much
space, resulting in a non-logspace computation. Instead, we use a virtual input
tape. This means that the current input position j is stored on work tape B
(using a logarithmic amount of space), and in each step we work out f(x)j ,
using work tape C.

All of these components are logspace, meaning our composition function x
is also logspace as if L ≤L L

′ then L′ ∈ L implies L ∈ L.

4.4 Logspace reduction are polytime

Let f be a logspace reduction. The bitwise problem is in L and therefore also
in P.

So, for any x, the length of f(x) is polynomially bounded and each bit can
be computed in polynomial time, allowing us to compute f(x) in polynomial
time (polynomially many steps over polynomially bits).

4.5 Application: P-completeness

Just as polytime reductions give a reasonable notion of NP-completeness, so
logspace reductions give a reasonable notion of P-completeness.

With P-completeness, we cannot simply look to the degree of the polynomial
to determine how hard it is, as these are infinite and so P would be the same
as P-complete. We instead need a different measure.

Definition 1 (P-completeness) A problem is P-complete if it is in P and
every problem in P logspace-reduces to it.
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