Algorithms & Complexity: Lecture 4, Hierarchy
theorems and a complexity zoo

Sam Barrett

February 10, 2021

1 Low-level conventions

1.1 Representation of Turing machines

e We will associate with every a € {0,1}* a Turing machine M, s.t. for
each Turing machine M, there are infinitely many o where M = M,.

We will also fix a bijection between {00,11}* (a fragment of all binary
strings) and the set of all TMs (for every word inside this language, there
is a corresponding unique TM), we will write Mg for the TM M that
B € {00,11}* is mapped to. Here §8 is the canonical description of M or a
code of M .

e We will extend our notion of Mg to o € {0,1}* (any binary string), we
may write o = Sy with 5 € {00,11}* and with v € {0,1}* being either
empty or beginning with 01 or 10. In this case we also set M, = Mg.
Here « is a description of M = Mp.

Unpacking this:

If we have a bitstring o and want to find the machine that it represents,
you write « in the form §v and extract the initial § section.

A very useful property of the above framework is that given any o = 8y
we can computably extract low-level information about M = M, such as its
states, transition table, alphabet etc. Extracting this information can be done
in time and space only dependant on (3, its canonical description. We can
completely ignore «y in this case, thinking of it as padding.

Note: we know when to stop reading g as we treat the gadgets “01” or “10”
as blanks/ end of input markers.

1.2 Constructable functions

We shall identify N and {0, 1}* by some fized bijective coding . This will make
more sense later in the lecture. Refer back.

1.2.1 Time-constructibility convention
All functions ¢ : N — N we consider are time-constructible meaning:
e t(n) >n

e There is a TM M computing 1" — ¢(n) in time t(n)

1.2.2 Space-constructibility convention
All functions s : N — N we consider are space-constructible meaning;:
e s(n) >logn

e There is a TM M computing 1" — s(n) in space O(s(n))

2 Universality

We have previously seen the following:

2.1 Normal form of Turing machines

Theorem 1 Suppose M computes f : {0,1}* — {0,1} in time t(n) and
space s(n). Where M can have an arbitrary alphabet and any number of
tapes.

There exists a 3-tape TM M with alphabet {r>,0,0,1} computing f,

e in time O(t(n)?)
o in space O(s(n))

These constraints depend on M and not its description ¢

Moreover, we can compute the canonical description B of M from the
canonical description B of M or any other description,c, of M for that
matter (in the form a = 7).

2.2 An efficient universal machine, U

For a TM M and a bitstring = € {0,1}*, we shall write M(x) € {0,1}* U {1}
for the output of M on z, if it exists, otherwise 1 if it diverges or does not
terminate.

Theorem 2 There exists a TM U s.t. Yz € {0,1}* and o € {0,1}*, we
have U(z, o) = M, (x)

Moreover, we can also talk about its complexity, if M, halts on x in t
steps and uses s space, then U halts on (x,a) within cprt? steps and dyrs
space, where cpr and dps are constants depending only on M = M, not
its description «. (It will precisely depend on the canonical description of

M B)

Our formulation of U will have 5 tapes: 1 input and 4 work tapes.

We will now examine how U operates over an input (z, «):

1. Computing the normal form

Let o = f7 be as defined in Section 1.1 and recall the definition of 3 and
M from Theorem 1

e U first computes 3 from o = Bv and prints it onto tape 2, it only

reads up to end of g

e The first step concludes by printing a description of the start state

of M on tape 3

This step takes time and space complexity depending on (3, ignoring ~.

Usage of tapes and space complexity

e From this stage onward, only the initial = section of the input (x, «)

will be used on tape 1.
Where we can visualise our input tape as:

o[z o] [me] [en]] o]

Where the comma can be encoded as the first occurrence of our 01
or 10 gadget and our delimiter, if we encode our x in the same way
as we do for our canonical descriptions .

Tape 2 will become read-only and is used as a lookup table for
simulating the transitions of M. Therefore, this tape uses space |3|
Tape 3 will always store a current state, using only as much space as
the description of a state of M (without loss in generality our space
usage is < |3])

Tapes 4 & 5 will be used as the two work tapes of M. Therefore,
these tapes use only as much space as M does on its work tapes.

2. The simulation & time complexity

Each step of M is simulated as follows:

e { inspects tape 3 to find the current state ¢ and reads the symbols

by, by, bs at the head-positions of tapes 1,4 and 5. This process takes
no (0) time.

e U scans the transition table of M (by inspecting tape 2) to find the

transition corresponding to (q,b1,b4,b5). The time of this depends
only on 3

e U overwrites tape 3 with the description of the new state. The time

this takes depends only on f.

e U writes the appropriate symbols at the head-positions of tapes 4
and 5 before moving the heads of tapes 1,4 and 5 in the appropriate
directions. This takes a single (1) time step.

U will halt whenever M does, outputting the content of tape 5.

3 Diagonalisation

Theorem 3 (Time hierarchy theorem) There is a language L € DTIME(t(n))*)
s.t. L ¢ DTIME

i.e. DTIME(t(n)) € DTIME(t(n)*) (one is strictly contained
within the other)

Where t is arbitrary but time constructable as defined in Section 1.

3.1 Time-sensitive diagonalisation

To perform diagonalisation in such a way as to concern ourselves with time
complexity, we define a Turing machine D that does the following:

Definition 1 (Turing machine D)

o on input x (x is a binary string x € {0,1}*), run U on (x,z) for
t(|z|)? steps, we use t(|x|)® as it is somewhere between the time over-
head for U (t(n)?) and our states time hierarchy constraint of t(n)*.

e if it halts in this time and rejects (where rejecting means it outputs
0) then accept (output 1)

e otherwise, reject (output 0).

We can now define a language L C {0,1}* as the language that is decided
by D. L is just the set of descriptions of Turing machines for which when U
runs it on itself it rejects the appropriate amount of time.

By our construction of L we can observe that L € DTIME(¢(n)*) as our
machine D can only run for t(|z|)? steps.

We claim therefore, that L is the explicit language that separates DTIME(t(n?))
from DTIME(¢(n)), meaning that L ¢ DTIME(¢(n)). We will prove this by
contradiction.

3.1.1 Proof

Assume that L € DTIME(t(n)), and suppose M decides L taking ct(n) steps
on inputs of length n.

We now use U to simulate M and say it does this within cpsct(n)? steps on
inputs of length n. Where ¢j; depends only on M and not its description.

Let us fix ng € N s.t. if n > ng then t(n)® > cpret(n)?.

This is a key point, it means that there is a point in N, ng where whenever
n is greater than ng we can say that t(n)3 (the number of steps U runs for) is
greater than the number of steps our machine M is purported to take.

This is where “foo is dependant only on bar not its description” becomes
important, the trick to breaking this inequality and deriving a contradiction is
to let a be a description of M (which has infinitely many descriptions) with
laf = no

We will now examine what happens when we run D with the input « that
I described above.

e DrunsU on (o,) for t(|ar|)? steps as per our definition of D in Definition 1

e From our fixing above, along with our definition of «, we can say that
t(|a])® > eprct(|a])?, giving us in turn:

U(a,) = My (a) = M(a)
As M must halt on « within ct(|«|) steps, by our assumption of M.
e As per our definition of D, as M («) halts, D must return 1 — M(«) as it

always returns the inverse.

However, by doing so, as M was meant to decide the language described
by D we have derived a contradiction by constructing a situation in which
M and D disagree on an input «. Therefore, M could not have decided
the language described by D.

By a similar proof, tracking space instead of time we can show that:

Theorem 4 (Space hierarchy theorem) There is a language L € SPACE(t(n
s.t. L ¢ SPACE(t(n))

We will not go on to prove this.

4 Consequences and the complexity zoo

4.1 Separations of complexity classes

Theorem 5 We have the following:
P C EXP
L ¢ PSPACE

4.1.1 Proof

For both of the above statements, the C case is obvious. However, for non-
equality we have,

Time hierarchy theorem

P C DTIME(2") ¢ DTIME(2'") C EXP

This can be seen by the time-hierarchy theorem explored earlier.
We also have for space:

L C SPACE(n) € SPACE(n?) C PSPACE

which can equally be seen via the space-hierarchy theorem.
We now have a zoo of complexity classes:

<—Savitch’s theorem

L C€ P C NPCPSPACE C NPSPACE C EXP

N

Lecture 2 obv obv

This is all we know! Every other such problem remains open.

