
Algorithms & Complexity: Lecture 4, Hierarchy

theorems and a complexity zoo

Sam Barrett

February 10, 2021

1 Low-level conventions

1.1 Representation of Turing machines

• We will associate with every α ∈ {0, 1}∗ a Turing machine Mα s.t. for
each Turing machine M , there are infinitely many α where M = Mα.

We will also fix a bijection between {00, 11}∗ (a fragment of all binary
strings) and the set of all TMs (for every word inside this language, there
is a corresponding unique TM), we will write Mβ for the TM M that
β ∈ {00, 11}∗ is mapped to. Here β is the canonical description of M or a
code of M .

• We will extend our notion of Mβ to α ∈ {0, 1}∗ (any binary string), we
may write α = βγ with β ∈ {00, 11}∗ and with γ ∈ {0, 1}∗ being either
empty or beginning with 01 or 10. In this case we also set Mα := Mβ .
Here α is a description of M = Mβ .

Unpacking this:

If we have a bitstring α and want to find the machine that it represents,
you write α in the form βγ and extract the initial β section.

A very useful property of the above framework is that given any α = βγ
we can computably extract low-level information about M = Mα such as its
states, transition table, alphabet etc. Extracting this information can be done
in time and space only dependant on β, its canonical description. We can
completely ignore γ in this case, thinking of it as padding.

Note: we know when to stop reading β as we treat the gadgets “01” or “10”
as blanks/ end of input markers.

1.2 Constructable functions

We shall identify N and {0, 1}∗ by some fixed bijective coding . This will make
more sense later in the lecture. Refer back.

1

1.2.1 Time-constructibility convention

All functions t : N→ N we consider are time-constructible meaning:

• t(n) ≥ n

• There is a TM M computing 1n 7→ t(n) in time t(n)

1.2.2 Space-constructibility convention

All functions s : N→ N we consider are space-constructible meaning:

• s(n) ≥ log n

• There is a TM M computing 1n 7→ s(n) in space O(s(n))

2 Universality

We have previously seen the following:

2.1 Normal form of Turing machines

Theorem 1 Suppose M computes f : {0, 1}∗ → {0, 1} in time t(n) and
space s(n). Where M can have an arbitrary alphabet and any number of
tapes.

There exists a 3-tape TM M̃ with alphabet {B,�, 0, 1} computing f ,

• in time O(t(n)2)

• in space O(s(n))

These constraints depend on M and not its description β̃
Moreover, we can compute the canonical description β̃ of M̃ from the

canonical description β of M or any other description,α, of M for that
matter (in the form α = βγ).

2.2 An efficient universal machine, U
For a TM M and a bitstring x ∈ {0, 1}∗, we shall write M(x) ∈ {0, 1}∗ ∪ {↑}
for the output of M on x, if it exists, otherwise ↑ if it diverges or does not
terminate.

Theorem 2 There exists a TM U s.t. ∀x ∈ {0, 1}∗ and α ∈ {0, 1}∗, we
have U(x, α) = Mα(x)

Moreover, we can also talk about its complexity, if Mα halts on x in t
steps and uses s space, then U halts on (x, α) within cM t

2 steps and dMs
space, where cM and dM are constants depending only on M = Mα, not
its description α. (It will precisely depend on the canonical description of

2

M β)
Our formulation of U will have 5 tapes: 1 input and 4 work tapes.

We will now examine how U operates over an input (x, α):

1. Computing the normal form

Let α = βγ be as defined in Section 1.1 and recall the definition of β̃ and
M̃ from Theorem 1

• U first computes β̃ from α = βγ and prints it onto tape 2, it only
reads up to end of β

• The first step concludes by printing a description of the start state
of M on tape 3

This step takes time and space complexity depending on β, ignoring γ.

Usage of tapes and space complexity

• From this stage onward, only the initial x section of the input (x, α)
will be used on tape 1.

Where we can visualise our input tape as:

B x0 x1 . . . xk , α1 α2 . . . αl

Where the comma can be encoded as the first occurrence of our 01
or 10 gadget and our delimiter, if we encode our x in the same way
as we do for our canonical descriptions β.

• Tape 2 will become read-only and is used as a lookup table for
simulating the transitions of M̃ . Therefore, this tape uses space ˜|β|

• Tape 3 will always store a current state, using only as much space as
the description of a state of M̃ (without loss in generality our space
usage is < |β̃|)

• Tapes 4 & 5 will be used as the two work tapes of M̃ . Therefore,
these tapes use only as much space as M does on its work tapes.

2. The simulation & time complexity

Each step of M̃ is simulated as follows:

• U inspects tape 3 to find the current state q and reads the symbols
b1, b4, b5 at the head-positions of tapes 1,4 and 5. This process takes
no (0) time.

• U scans the transition table of M̃ (by inspecting tape 2) to find the
transition corresponding to (q, b1, b4, b5). The time of this depends
only on β̃

• U overwrites tape 3 with the description of the new state. The time
this takes depends only on β̃.

3

• U writes the appropriate symbols at the head-positions of tapes 4
and 5 before moving the heads of tapes 1,4 and 5 in the appropriate
directions. This takes a single (1) time step.

U will halt whenever M̃ does, outputting the content of tape 5.

3 Diagonalisation

Theorem 3 (Time hierarchy theorem) There is a language L ∈ DTIME(t(n)4)
s.t. L /∈ DTIME

i.e. DTIME(t(n)) (DTIME(t(n)4) (one is strictly contained
within the other)

Where t is arbitrary but time constructable as defined in Section 1.

3.1 Time-sensitive diagonalisation

To perform diagonalisation in such a way as to concern ourselves with time
complexity, we define a Turing machine D that does the following:

Definition 1 (Turing machine D)

• on input x (x is a binary string x ∈ {0, 1}∗), run U on (x, x) for
t(|x|)3 steps, we use t(|x|)3 as it is somewhere between the time over-
head for U (t(n)2) and our states time hierarchy constraint of t(n)4.

• if it halts in this time and rejects (where rejecting means it outputs
0) then accept (output 1)

• otherwise, reject (output 0).

We can now define a language L ⊆ {0, 1}∗ as the language that is decided
by D. L is just the set of descriptions of Turing machines for which when U
runs it on itself it rejects the appropriate amount of time.

By our construction of L we can observe that L ∈ DTIME(t(n)4) as our
machine D can only run for t(|x|)3 steps.

We claim therefore, that L is the explicit language that separates DTIME(t(n4))
from DTIME(t(n)), meaning that L /∈ DTIME(t(n)). We will prove this by
contradiction.

3.1.1 Proof

Assume that L ∈ DTIME(t(n)), and suppose M decides L taking ct(n) steps
on inputs of length n.

We now use U to simulate M and say it does this within cMct(n)2 steps on
inputs of length n. Where cM depends only on M and not its description.

Let us fix n0 ∈ N s.t. if n ≥ n0 then t(n)3 > cMct(n)2.

4

This is a key point, it means that there is a point in N, n0 where whenever
n is greater than n0 we can say that t(n)3 (the number of steps U runs for) is
greater than the number of steps our machine M is purported to take.

This is where “foo is dependant only on bar not its description” becomes
important, the trick to breaking this inequality and deriving a contradiction is
to let α be a description of M (which has infinitely many descriptions) with
|α| ≥ n0

We will now examine what happens when we run D with the input α that
I described above.

• D runs U on (α, α) for t(|α|)3 steps as per our definition ofD in Definition 1

• From our fixing above, along with our definition of α, we can say that
t(|α|)3 ≥ cMct(|α|)2, giving us in turn:

U(α, α) = Mα(α) = M(α)

As M must halt on α within ct(|α|) steps, by our assumption of M .

• As per our definition of D, as M(α) halts, D must return 1−M(α) as it
always returns the inverse.

However, by doing so, as M was meant to decide the language described
by D we have derived a contradiction by constructing a situation in which
M and D disagree on an input α. Therefore, M could not have decided
the language described by D.

By a similar proof, tracking space instead of time we can show that:

Theorem 4 (Space hierarchy theorem) There is a language L ∈ SPACE(t(n)2)
s.t. L /∈ SPACE(t(n))

We will not go on to prove this.

4 Consequences and the complexity zoo

4.1 Separations of complexity classes

Theorem 5 We have the following:
P (EXP
L (PSPACE

4.1.1 Proof

For both of the above statements, the ⊆ case is obvious. However, for non-
equality we have,

5

P ⊆

Time hierarchy theorem︷ ︸︸ ︷
DTIME(2n) (DTIME(24n) ⊆ EXP

This can be seen by the time-hierarchy theorem explored earlier.
We also have for space:

L ⊆ SPACE(n) (SPACE(n2) ⊆ PSPACE

which can equally be seen via the space-hierarchy theorem.
We now have a zoo of complexity classes:

L ⊆︸︷︷︸
Lecture 2

P ⊆︸︷︷︸
obv

NP ⊆
←Savitch’s theorem︷ ︸︸ ︷

PSPACE ⊆︸︷︷︸
obv

NPSPACE ⊆ EXP

This is all we know! Every other such problem remains open.

6

