
Algorithms & Complexity: Lecture 5, P vs NP &

Algorithms

Sam Barrett

February 15, 2021

1 History of Computing

In the 1950s to 1960s one of computer science researcher’s focuses was on general
ways to solve problems.

One such problem was SAT, is a given logical formula φ satisfiable?
Many of the problems known at this time had polynomial running time.

We know that polynomial time is ultimately always lower than exponential, for
instance 1.000001n > n10000000000 if n is large enough. We can prove this by
taking logs of both sides.

During this time polynomial time became the accepted standard of efficiency.
It has many nice properties including being closed under addition, multipli-
cation and composition. I.e. if both p and q are polytime functions: p(x) + q(x)
is polytime, p(x)× q(x) is polytime and p(q(x)) is polytime. We define P as the
class of problems solvable in polynomial time (wrt. the size of the input).

Later, in the 1970s research moved to focus on the problems that no efficient
algorithm was known to be able to solve, the set of problems that could not be
included in P.

Our previous example SAT cannot be brute forced in polynomial time. If
given N variables in M clauses, we must make 2N truth assignments, checking
each of the M clauses in O(N) time resulting in overall running time in O(2N ·
N ·M), clearly this is in EXP.

Research started to focus on trying to prove that there is no solution in P
for SAT.

In so doing a new class was defined, NP. The class of problems where we
can verify a potential solution, or certificate, in polynomial time.

How much harder is solving compared with verifying?
Given that we define P as the class of problems with solutions in polytime,

and NP is the class of problems for which we can verify a potential solution
in polytime, clearly P ⊆ NP as solving can be seen as a very difficult way of
verifying.

But what about the opposite direction? Say we can verify potential solutions
in n12 time, how long would it take us to solve the problem? If we can solve
this in some polynomial amount of time nk then we have shown that P = NP!

1

2 From SAT to graphs

Definition 1 (Independent Set) Given an undirected graph G = (V,E) on
n vertices, find a set X of maximal size such that no pair of vertices in X
form an edge

We can reduce the independent set problem to SAT:

• Take an instance I of 3-SAT with N variables and M clauses

• Build a graph G on 3M vertices as follows:

– Introduce triangle for each clause

– Add conflicts to ensure every variable is not both True and False

• Claim: I is satisfiable iff G has an independent set of size M

This reduction is in polytime meaning that the Independent set problem is
also in NP

2.1 Example

Suppose we have an I = (x1 ∨ x2 ∨ x̄3)︸ ︷︷ ︸
c1

∧ (x2 ∨ x̄4 ∨ x̄1)︸ ︷︷ ︸
c2

∧ (x3 ∨ x1 ∨ x̄2)︸ ︷︷ ︸
c3

We can convert each clause into a separate triangle:
c1:

x1

x2 x̄3

c2:

x2

x̄4 x̄1

c3

x3

x1 x̄2

Now we must add our conflicts. We do this by connecting conflicting vari-
ables.

2

x1

x2 x̄3

x2

x̄1 x̄4

x3

x1 x̄2

3 Algorithmic paradigms to cope with NP-hardness

Assuming P 6= NP, a problem X being NP-hard implies that we cannot have
an algorithm ALG for it which satisfies both of the following properties:

• ALG is always correct

• ALG runs in polytime

This has lead to the development of new algorithmic paradigms including:

1. Exact Exponential algorithms

Here we are focused on producing correct results, no matter the time
complexity cost.

2. Polytime approximation algorithms

Here we want to focus on having a polynomial running time, to do this
we relax our first requirement and allow our algorithm to return only
approximately correct results in some cases.

3. Parameterised algorithms

Before trying to solve a problem optimally we can fix a parameter k and
using this we can now reevaluate running time with respect to both the
length of the input as we always have but also our fixed parameter k.

4. Polytime randomisation algorithms

Here our algorithm must still run in polytime, and instead of always being
correct we say that it must be correct with a given probability.

3.1 Exact exponential algorithms

This approach essentially tries to answer the question: “Can we do better than
brute force, even if it still uses exponential time?”

3

3.1.1 Vertex Cover

Definition 2 Given an undirected graph G = (V,E) on n vertices, find a
set X of minimum size such that each edge of G has at least one endpoint
in X

The brute force approach to this problem runs in 2n · nO(1) time. Can we
design an 1.99n · nO(1) time algorithm?

For instance the graph:

Has a solution of:

Where X = 2.
The brute force approach to finding this would be to enumerate all subsets of

vertex set of G, V in increasing sizes and for each subset, checks in polynomial
time whether it is a vertex cover. This check is performed simply by checking
whether every element in E is connected to at least one of the vertices in the
subset.

We can make observations which can allow us to improve upon this approach.
One such observation is that there is no point in adding a vertex of degree 1 to
our vertex cover, it can never connect to more points than its unique neighbour
(the vertex on the other end of the edge), so we add the unique neighbour
instead.

So we say that we only add vertices of degree ≥ 2 to the vertex cover.
This, for every potential vertex, introduces a binary choice as to whether we
add it to the vertex cover. Using this we define T (n) as the time needed to
solve the vertex cover on graphs with n vertices. We can therefore say that
T (n) ≤ T (n− 1) + T (n− 3).

We derive this inequality by saying:

• T (n − 1) is spawned as a sub problem when we take v into the vertex
cover, we reduce the size of V by 1

• Alternatively, if we do not add v to the vertex cover, we must add all
≥ 2 neighbours to the VC, so the number of vertices to consider in the
subproblem has decreased by at least 3.

We can solve this inequality by setting T (n) equal to xn which gives us
x0 − x2 − 1 = 0, solves to 1.47n · nO(1).

3.2 Polynomial time approximation algorithms

Again looking at our Vertex Cover problem, can we find a vertex cover with has
size at most 10 times that of the minimum vertex cover ? Can we do it in nO(1)

time?

4

Do do this we must first find a maximal set M of pairwise disjoint edges.
This can in fact be found in polynomial time!

Using this we can output a solution R which has both endpoints of each edge
from M . By definition R is a vertex cover, albeit not a minimal vertex cover.
We can see that if OPT is a vertex cover of minimum size, then |R| ≤ 2 · |OPT|.

We have designed a 2-approximation for the Vertex Cover problem in nO(1)

time, nothing better is known.

3.3 Parameterised algorithms

To look at this approach we have to tweak the definition of our Vertex Cover
problem:

Definition 3 (Parameterised Vertex Cover) Given an undirected graph
G = (V,E) on n vertices and an integer k, goes G have a vertex cover
of size ≤ k?

This can be thought of as the question: “Given a parameter k, how fast can
we check whether there is a vertex cover of size k? . Here we are not concerned
with the size of the minimum vertex cover, rather we are concerned with being
able to say whether the minimal vertex cover lies above or below k

An algorithm has been found which runs in 2k · nO(1) time.

3.4 Polynomial time randomisation algoriths

Definition 4 (Max Cut) Given an undirected graph G = (V,E) on n ver-
tices, find a set X which maximises the number of edges which have one
endpoint in X and the other endpoint in V \X

We can define a 0.5-approximation algorithm. Since the goal with this prob-
lem is to maximise, the approximation ratio is usually written as < 1. This
algorithm works by flipping a coin to decide which side of the partition each
vertex goes to. We expect half of the edges to be in the cut.

This algorithm runs in nO(1) time.
This approach can be de-randomised by starting with any arbitrary parti-

tion, and for each vertex if it has strictly more neighbours in the same side then
move it to the other side. This re-shuffling must be finite as eventually exactly
half the edges are in each cut.

The best known result for this problem is a 0.86-approximation.

5

