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1 What are greedy algorithms?

There is no formal definition for greedy algorithms, we can actually design multi-
ple different greedy algorithms to solve the same problem. They are categorised
as algorithms that make local decisions to improve a solution, working step-
by-step with no concern for what they have done previously or might do later.
Often this short-sighted approach does not help in finding an optimal solution,
however, some can still approximate an optimal solution.

There are advantages and disadvantages of greedy algorithms.
Advantages:

• They are intuitive

• This leads to them being easy to explain and implement

• Most heuristics are based on greedy choices

• They can be shown to sometimes be approximately correct

Disadvantages:

• There are different notions of greedy, no formal definition

• Local correct steps do not guarantee a globally correct approach

• Often do not result in optimal solutions

Our 2-approximation for the vertex cover problem discussed in the previous
lecture is an example of a greedy algorithm, it ran in polynomial time.

2 Dijkstra’s Algorithm

This is an algorithm that finds the shortest paths in a directed graph from a
fixed vertex s.

The running time of this algorithm is O(mn) where n,m are the number of
vertices and edges respectively. This is the case as the while loop runs at most
n times and each iteration takes m steps.
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Algorithm 1: Dijkstra’s Algorithm

1 Let S be the set of explored vertices
2 For each u ∈ S we store the distance of the shortest s→ u path in

dist(u)
3 Initialise S = {s} and dist(s) = 0
4 while S 6= V do
5 Select a vertex v /∈ S which minimises

temp-dist(v) = min
(u,v)∈E,u∈S

(dist(u) + length(u, v))

6 Add v to S and set dist(v) = temp-dist(v)

7 end

2.1 Correctness of Dijkstra’s algorithm

Theorem 1 Consider the set S at any point in the running of the algo-
rithm. For each u ∈ S the quantity dist(u) stores the value of the shortest
s→ u path.

We can prove this by induction:

• Base case: |S| = 1 and dist(s) = 0

• Inductive hypothesis: Suppose that the theorem holds for |S| = k

• Inductive step: Suppose we now grow S by one more vertex by adding
some vertex v.

By line 5 we know: temp-dist(v) = dist(u) + length(u, v) for some u
already in S

Suppose that there is a path P s→ v that is shorter than dist(v)

Let P leave S via an edge (x, y) for some x ∈ S, y /∈ S

Contradiction

3 Prim’s algorithm

Prim’s algorithm is an algorithm for finding the minimum spanning tree of a
given graph G.

3.1 Minimum spanning trees

Let G be a undirected, connected graph G = (V,E) with n vertices.
A subgraph T = (V ′, E′) of G is said to be a spanning tree if:

• spanning → V ′ = V

• tree → |E′| = n− 1
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For instance, the graph:
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e2

Has 4 different spanning trees:

1.
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2.
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3.
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4.

v1 v2

v3 v4

e1 e3

e2

Problem 1 (Minimum Spanning Tree (MST) problem)
Given an undirected, connected graph G = (V,E) with edge costs given

by cost : E → R+, find a spanning tree T = (V,E′) such that
∑

e∈E′ cost(e)
is minimised

Algorithm 2: Finding MST - Prim’s algorithm

1 Let S be the set of explored vertices
2 Initialise S = {s} where s is any vertex
3 Initialise E′ = ∅
4 while S 6= V do
5 Select a vertex v /∈ S which minimises min

e=u−v,u∈S
cost(e)

6 Add v to S and e to E′

7 end

Running time of this algorithm is O(mn) where n,m are the number of
vertices and edges respectively. The while loop runs at most n times with each
loop requiring m time.

3.2 Correctness of Prim’s algorithm

We first make an assumption that all edge costs are distinct.
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Theorem 2 For any S ⊂ V , let e be the edge of minimum cost having one
end point in S and one end point in V \S. Then every MST contains the
edge e

First suppose that there is a MST T which does not contain this edge e
whose endpoints are v ∈ S and w /∈ S. We will now find an edge e′ in T s.t.
cost(e′) > cost(e). Therefore, replacing e′ with e gives a spanning tree of lower
cost, thus deriving a contradiction.

4 Kruskal’s algorithm

Algorithm 3: Kruskal’s algorithm

1 Order the edges of E as e1, e2, . . . , em in order of cost (increasing)
2 Initialise E′ = ∅ and i = 1
3 while i ≤ m do
4 if adding ei to E′ does not create a cycle then
5 Add ei to E′

6 else
7 Do not add ei to E′

8 end
9 i + +

10 end

This algorithms also runs in O(mn) time where n,m are the number of
vertices and edges respectively.

The notable difference with this algorithm is that we do not consider all
edges

4.1 Correctness of Kruskal’s algorithm

We again make the assumption that all edge-costs are distinct.

Theorem 3 (Same as for Prim’s) For any S ⊂ V , let e be the edge of
minimum cost having one end point in S and one end point in V \S. Then
every MST contains the edge e

We consider the algorithm at some arbitrary step.
Suppose Kruskal’s algorithm adds the edge v − w at this step.
Let S be the set of all vertices to which v had a path to before this step. We

can see that w /∈ S as otherwise we would have a cycle, breaking the algorithm
at line 4.

By the definition of S no edges from S to V \S have been added before this
stage.
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Since v ∈ S and w /∈ S and as Kruskal’s algorithm adds edges in increasing
order of cost, it follows that v − w is the cheapest edge with one endpoint in S
and the other in V \S

5 Reverse-delete algorithm for finding MSTs

We can also approach this problem from the opposite direction. Instead of
adding edges until we cannot avoid creating a cycle, we start and remove (the
most expensive) edges until no cycles are left.

6


