
Algorithms & Complexity: Lecture 8, Greedy

Algorithms 2

Sam Barrett

June 2, 2021

1 Interval Scheduling Problem

Problem 1 (The Interval Scheduling Problem)

• Given a set of n requests R = {Req(1), Req(2), Req(3), . . . , Req(n)}

• Req(i) has a start time given by Start(i) and a finish time by Finish(i)

• There exists a machine which can handle one request at a time.

• Two requests conflict if they overlap

Select a set C ⊆ R of requests s.t. |C| is maximised and no two requests
from C conflict.

See Slides for lecture 8 for details on failed greedy algorithm construction.
A correct greedy algorithm for tackling this problem can be seen below:

Algorithm 1: Greedy Interval Scheduling

1 Let R = {Req(1), Req(2), . . . , Req(i), . . . , Req(n)} be the set of all
requests

2 Let C denote the set of requests that we select
3 Instantiate C = ∅
4 while R 6= ∅ do
5 Find the request Req(i) ∈ R which has the smallest finish time
6 Add Req(i) to C
7 Delete from R all requests that conflict with Req(i)

8 end

1.1 Correctness

• C does not contain any conflicting requests

1



Suppose there is another set OPT which selects more requests than C. Let
C select Req(i1), Req(i2), . . . , Req(ik) in that order.

Let OPT schedule Req(j1), Req(j2), . . . , Req(jm) in that order.

Lemma 1 For each 1 ≤ l ≤ k, we have Finish(il) ≤ Finish(jl)

Proof 1 1. Base Case: l = 1

2. Inductive Step: Start(jl) ≥ Finish(jl−1) ≥ Finish(il−1)

Therefore, Req(jl) does not conflict with Req(il−1). However,
our algorithm chose il instead, meaning Finish(il) ≤ Finish(jl)

Since m > k, OPT selects a request Req(jk+1) we can say:

Start(jk+1) ≥ Finish(jk) ≥ Finish(ik)

And thus derive a contradiction as our algorithm stops after selecting ik

A harder variant of the interval scheduling problem must schedule all re-
quests, minimising lateness. And is defined as follows:

Problem 2 • We have n requests

• Each requests has a duration given by Time(i)

• Additionally, each request, Req(i) now had a deadline, Deadline(i)

• Choosing a start time Start(i) for each request not gives a finish time
Finish(i) = Start(i) + Time(i)

• A request Req(i) is late is Finish(i) > Deadline(i)

Lateness(i) =

{
Finish(i)− Deadline(i) if Finish(i) > Deadline(i)

0 otherwise

Schedule all requests in a non-conflicting way, minimising the maximum
lateness.

A simple greedy algorithm does not find an optimal scheduling.

2


