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Dynamic programming is very different from greedy algorithms, greedy al-
gorithms follow a rule blindly whereas DP algorithms are more careful.

The general way a dynamic programming algorithm works is by building up
a final solution from the solutions of multiple sub-problems. But how do we
know which sub-problems to consider? And how do they contribute to the final
solution?

1 Fibonacci Numbers

We can define the set of fibonacci numbers recursively as follows:

F0 = 0

F1 = 1

Fn = Fn−1 + Fn−2,∀n ≥ 2

This recursive definition can easily be interpreted into an algorithm:

Algorithm 1: RecursiveFibonacci

1 if n = 0 then
2 return 0
3 if n = 1 then
4 return 1
5 else
6 return RecursiveFibonacci(n− 1) + RecursiveFibonacci(n− 2)
7 end

Intuitively, you can see that the path of this algorithm will form a (recursive)
tree with the final solution being the root.
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Figure 1: Recursive tree to compute F7

1.1 Memo(r)isation of recursion

This method looks at the previous algorithm and asks whether it would be more
efficient to store values on the first time they are computed so that they may
be retrieved from a lookup table on subsequent recursions, for instance you can
see that F2 is recalculated in every sub-tree in Figure 1, If we were to store it
we could remove the need for this calculation to be repeated.

Algorithm 2: MemoisationFibonacci

1 if n = 0 then
2 return 0
3 if n = 1 then
4 return 1
5 if F [n] is undefined then
6 F [n]← MemoisationFibonacci(n-1) + MemoisationFibonacci(n-2)
7 end

Using this algorithm we can trim or prune the tree that needs to be gener-
ated.

1.2 Iterative approach

At this point we are already maintaining an array, so why do we not fill it up
iteratively? Recursion acts as a layer of abstraction, making our process closer
to the formal (recursive) definition of the set. We can remove this and instead
write our algorithm as:

What is the running time of such an algorithm?

• we store n items in our array F
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Figure 2: Computing F7 via memoisation

Algorithm 3: IterativeFibonacci(n)

1 F [0]← 0
2 F [1]← 1
3 for i← 2 to n do
4 F [i]← F [i− 1] + F [i− 2]
5 end

• Computing each new entry needs 2 lookups and one addition.

Therefore, the total running time to compute Fn is O(n)

2 Interval Scheduling Problem

2.1 Without weights (lecture 8 recap)

• We are given a set of n requests R

R = {Req(1), Req(2), . . . , Req(i), . . . , Req(n)}

• Req(i) has a start time of Start(i) and a finish time of Finish(i)

• There is a machine which can handle one request at a time

• Two requests conflict if they overlap

The interval scheduling problem asks:

Problem 1 (Interval Scheduling) Select a set C ⊆ R of requests such that
|C| is maximised and no two requests from C conflict.
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2.2 Weighted

• We are given a set of n requestsR

R = {Req(1), Req(2), . . . , Req(i), . . . , Req(n)}

• Req(i) has a start time of Start(i) and a finish time of Finish(i)

• Additionally, each request Req(i) has a weight given by Weight(i)

• There is a machine which can handle one request at a time

• Two requests conflict if they overlap

The weighted interval scheduling problem asks:

Problem 2 (Weighted interval scheduling problem) Select a set C ⊆ R of
requests such that

∑
i∈C Weight(i) is maximised and no two requests from

C conflict.

I.e. maximise the weight of all chosen requests.
The algorithm seen for unweighted ISP does not hold. (Algorithm )

Algorithm 4: Select requests by increasing order to finish times

1 Let R = {Req(1), Req(2), . . . , Req(i), . . . , Req(n)} be the set of all
requests

2 Let C denote the set of requests that we select, initialise it as C = ∅
3 while R 6= ∅ do
4 Find the request Req(i) ∈ R which has the smallest finish time.
5 Add Req(i) to C
6 Delete from R all requests that conflict with Req(i)

7 end

Remember: This is an example of a greedy algorithm. It does not take the
newly added weights into account, therefore often finds a sub-optimal solution.

Instead to solve the weighted interval scheduling problem we:

Algorithm 5: Weighted interval scheduling algorithm

1 Begin by ordering requests in increasing order of finishing time.
2 M [0] = 0
3 for each request j ∈ 1..n do
4 M [j] = max{Weight(j) + M [Last(j)],M [j − 1]}
5 end

Where Last(i) is given by:
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Last(i) =

{
i the largest index i s.t. i is disjoint from j

0 if there is no request i < j that is disjoint from j

and is the last compatible request with i.
In this algorithm, M [j] stores the value of the set of requests of maximum

weight which can be chosen for the sub-instance containing requests {1, 2, . . . , j}.
Our goal is then to compute M [n] from the entries M [1],M [2], . . . ,M [n − 1]
(Note these have all been computed previously )

Our recurrence of max{Weight(j) + M [Last(j)],M [j − 1]} is basically de-
ciding whether request j is worth including in the final solution, if we had a
higher total weight previously without j then we can ignore it (keeping our pre-
vious value), but if not, our result is the weight of j along with the result of the
sub-instance concerned with the last compatible request with j (Last(j)).

2.2.1 Correctness

We can prove the correctness of this algorithm by induction on j. Our base case
will be j = 0 and our inductive step essentially argues the correctness of our
recurrence.

2.2.2 Running time

The running time of this algorithm can be broken down into:

• Sorting the requests in increasing order of finishing time, this can be done
in O(n log n) time.

• We can now find Last(j) for 1 ≤ j ≤ n in O(n) time.

• Filling M [j] requires a comparison between two existing entries from M
along with an addition and a max operation. This can be done in O(1)
time.

Therefore filling the entire array M can be done in O(n) time

3 Bellman-Ford algorithm for finding shortest
paths

We have previously looked at Dijkstra’s algorithm for finding shortest paths.
However, this algorithm has one major flaw: it does not work when we have
negative edge-lengths.

One might think a simple solution to this problem is to add a constant of
the largest negative length to all edges in a graph. I.e. if the lowest edge value
in a graph G is −2, by adding 2 to all edges there are no more negative edge
lengths. This does not work in practise as it affects what paths are the shortest,
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preferring paths with fewer edges. (Change in path cost is equal to number of
edges multiplied by the constant added).

An alternative algorithm that deals with this is the Bellman-Ford algo-
rithm.

This algorithm assumes that there are no negative cycles. As this would
imply that the optimal route is infinite in number of edges!

By assuming no negative cycles, we can say that for any two vertices s and
t, there is a shortest s→ t path which has at most n− 1 edges. We can show
this to be correct:

• Let P be a shortest s→ t path with the fewest number of edges.

• If a vertex x repeats on P , then delete the x→ x cycle from P

– Therefore the number of edges in P decreases

– The length of P cannot increase as there as no negative edges.

3.1 Defining our algorithm

We can say, for each vertex v ∈ V and each 0 ≤ i ≤ n − 1, let OPT[i, v] denote
the shortest s→ v path having at most i edges.

We can now set up our recurrence:

1. If the shortest s → v path actually uses at most i − 1 edges out of the
original i then the value is OPT[i− 1, v]

2. Otherwise, the last (ith) edge has to be (w, v) for some w ∈ V as our
shortest s→ v path uses all i edges.

• The cost of this path is OPT[i− 1, w] + cost(w, v)

• We need to minimise this over all w s.t. (w, v) is an edge in G

We must take a minimum of these two choices:

OPT[i, v] = min

{
OPT[i− 1, v], min

w∈V
(length(w, v) + OPT[i− 1, w])

}
We can now formulate our algorithm: (See Algorithm 6)

3.1.1 Running time

• OPT has O(n2) entries

• Computing each entry needs to lookup (and compute )O(n) entries.

– Computing OPT[i, v] needs knowledge of OPT[i− 1, x],∀x ∈ V

– Needs to perform O(n) min operations and O(n) additions

• Total running time O(n3)
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Algorithm 6: Shortest path from a vertex s to all other vertices

1 We maintain a n× n table indexed by 0 ≤ i ≤ (n− 1) and v ∈ V where
OPT[i, v] stores the length of the shortest s→ v path which uses at
most i edges.

2 Define OPT[0, s] = 0 and OPT[0, v] =∞ for each v ∈ V, v 6= s
3 for i = 1..n do
4 for v ∈ V do
5 OPT[i, v] =

min

{
OPT[i− 1, v], min

w∈V
(length(w, v) + OPT[i− 1, w])

}
6 end

7 end
8 return OPT[n− 1, v] for each v ∈ V

4 Subset Sum

The subset sum problem is defined as:

Problem 3 (Subset sum problem) Given n items {1, 2, . . . , n}, where each
item i has a non-negative integral weight given by Weight(i) and a number
W as an upper bound.

Find a set S of items such that
∑

i∈S Weight(i) is maximised subject to
the constraint

∑
i∈S Weight(i) ≤W

We can show that the greedy algorithm which always picks the item with
the heaviest weight (while sum is at most W ) fails.

We can show this by counterexample:

• Item 1 has weight 15

• Item 2 has weight 25

• Item 3 has weight 15

Suppose we are given W = 30.
Our greedy algorithm picks item 2 as it has the highest weight (while sum is

at most W ). But now it cannot pick either item 1 or 3 as then the sum would
exceed W . However, we can see that the optimal solution is to pick items 1 and
3 to total 30.

In fact, we know that no greedy algorithm is known which can solve this
problem optimally.

4.1 A DP algorithm

We can attempt to construct a dynamic algorithm to solve this problem:
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Let OPT[i] denote the max weight of choosing items from {1, 2, . . . , i} such
that sum of weights is maximised subject to being at most W .

Our final answer would therefore be stored in OPT[n].
Similarly to Algorithm 6, if an item i is not chosen to be in our result set,

OPT[i] = OPT[i− i], i.e. we skip it and continue with our previous value.
However, if i is chosen to be in the result set (at this point), then OPT[i]

contains Weight(i) plus the optimal selection of items from {1, 2, . . . , i − 1}
with weight at most W − Weight(i).

Note however, we do not store this value in OPT[i − i], in this location we
store the max weight of choosing items from {1, 2, . . . , i} subject to W .

We therefore require a table to store this information.
For each 1 ≤ i ≤ n and 1 ≤ X ≤ W , let OPT[i,X] be the max weight of

choosing items from {1, 2, . . . , i} subject to weight totalling at most X.

Recurrence We can define our recurrence:
Let OPT[i,X] be the max weight of choosing items from {1, 2, . . . , i} subject

to a max weight of X,

1. If i is not chosen,

OPT[i,X] = OPT[i− 1, X] , this occurs if Weight(i) > X

2. If i is chosen,

OPT[i,X] = Weight(i) + OPT[i− 1, X − Weight(i)]

We can therefore construct the recurrence:

OPT[i,X] = max {OPT[i− 1, X]; Weight(i) + OPT[i− 1, X − Weight(i)]}

This allows us to construct the following algorithm:

Algorithm 7: Subset Sum(n,W )

1 We maintain an (n + 1)× (W + 1) table indexed by 0 ≤ 0 ≤ n and
0 ≤ X ≤W where OPT[i,X] stores the max weight of choosing items
from {1, 2, . . . , i} subject to weight being at most X

2 We initialise OPT[0, Y ] = 0 for each 0 ≤ Y ≤W
3 for i = 1, 2, . . . ,W do
4 for each Z = 0, 1, 2, . . . ,W do
5 OPT[i, Z] = max{OPT[i−1, Z]; Weight(i)+OPT[i−1, Z−Weight(i)]}
6 end

7 end
8 return OPT [n,W]
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4.1.1 Running time

The table has O(n ·W ) entries. Filling a new entry in the table needs to look-
up two existing entries from the table and perform one addition and one max
operation. This can be done in constant time O(1)

Therefore, the time required to fill all entries is O(n ·W ).
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