Principals of Programming Languages: Revision Lecture

Sam Barrett

January 5, 2021

1 The Simply Typed λ -Calculus

1.1 Syntax

The syntax of the Simply Typed λ -Calculus can be defined as:

$$T ::= \mathbb{B}|T \to T$$

 $M ::= x | \lambda x : T.M | MM | \text{true}| \text{false}| \text{if } M \text{ then } M \text{ else } M$

You can see here that we use the Church style for typing whereby, variables in λ abstractions are annotated with types.

Values are atomic, i.e. they cannot be evaluated further and are of the form:

$$V ::= \lambda x : T.M | \texttt{true} | \texttt{false}$$

When we compute a term we are typically trying to reduce it to a value.

1.2 Evaluation Contexts

When we want to define the call-by-value small-step operational semantics of a language we use evaluation contexts. The Call-by-value evaluation contexts for the small-step operational semantics of λ -Calculus is defined as:

$$C ::= \bullet |CM|VC| \mathtt{if} \ C \ \mathtt{then} \ M \ \mathtt{else} \ M$$

A context is a term with a *hole* (\bullet) in it.

You can tell that this is the call-by-value evaluation context as you can see that we always evaluate the arguments of a application before the application itself.

These contexts yield the following rules:

$$\overline{(\lambda x : T.M)V \to_v M[x \backslash V])}^{\beta}$$

 $\overline{\text{if true then } M \text{ else } N \to_v M} \\ \text{IteT}$

$$\frac{M \to_v N}{C[M] \to_v C[N]} \mathtt{CTX}_C$$

 $\frac{}{\text{if false then } M \text{ else } N \rightarrow_v N} \text{IteF}$

1.3 Typing Rules

And to facilitate the typing of these expressions we use the following typing rules:

$$\begin{split} & \overline{\Gamma, x : T \vdash x : T}^{\text{VAR}} \\ & \frac{\Gamma, x : T \vdash M : U}{\Gamma \vdash \lambda x : T.M : T \to U} \text{ABS} \\ & \frac{\Gamma \vdash M : T \to U\Gamma \vdash N : T}{\Gamma \vdash MN : U} \text{APP} \\ & \overline{\Gamma \vdash \text{true} : \mathbb{B}}^{\text{T}} \\ & \overline{\Gamma \vdash \text{false} : \mathbb{B}}^{\text{F}} \\ & \frac{\Gamma \vdash M : \mathbb{B}\Gamma \vdash N : T\Gamma \vdash P : T}{\Gamma \vdash \text{if } M \text{ then } N \text{ else } P : T} \text{ITE} \end{split}$$

1.4 Church-Numerals

We can define Church Numerals in the Simply Typed λ -Calculus as having the type $\mathtt{Nat} = (\mathbb{B} \to \mathbb{B}) \to \mathbb{B} \to \mathbb{B}$.

Essentially, the number is a counter of how many applications of f appear.

We can now define a successor function, succ of type Nat \rightarrow Nat and an add function of type Nat \rightarrow Nat:

$$\begin{split} & \mathtt{succ} = \lambda a : \mathtt{Nat}.\lambda f : \mathbb{B} \to \mathbb{B}.\lambda x : \mathbb{B}.f(afx) \\ & \mathtt{add} = \lambda a : \mathtt{Nat}.\lambda b : \mathtt{Nat}.\lambda f : \mathbb{B} \to \mathbb{B}.\lambda x : \mathbb{B}.af(bfx) \end{split}$$

Our add function essentially concatenates the fs in a with the fs in b and our succ function appends an f to the value a.

This encoding can be used to iterate over a function of type $\mathbb{B} \to \mathbb{B}$ by applying a function $f: \mathbb{B} \to \mathbb{B}$ to a base case $x: \mathbb{B}$ $n: \mathbb{B}$ times.

However, if one wants to iterate over a function of another type, say, $T \to T$ one will need to define a new set of Church numerals over the type T, i.e. a type of the form $(T \to T) \to T \to T)$ (This is later solved through the use of System-F's paramerisation of types, similar to Monads)

1.4.1 Exercise 1

Can we iterate over a function of type Nat \rightarrow Nat using this method? I.e. can we define add = λa : Nat. λb : Nat.a succ b?

For this to be possible, a would need to have the type $(\mathtt{Nat} \to \mathtt{Nat}) \to (\mathtt{Nat} \to \mathtt{Nat})$. However, our value a is of the type $(\mathbb{B} \to \mathbb{B}) \to (\mathbb{B} \to \mathbb{B})$. These types are not compatible, if we were to redefine \mathtt{Nat} to fit this function we would end up with a recursive type definition which is not allowed within the Simply Typed λ -Calculus.

Note: This is possible using System-F

1.5 System-F

We define the Church-style syntax of System-F as:

$$\begin{split} T ::= \alpha |\mathbb{B}|\mathbb{N}|T \to T | \forall \alpha. T \\ M ::= x | \lambda x : T.M | MM | \texttt{true}|\texttt{false}|\texttt{if} \ M \ \texttt{then} \ M \ \texttt{else} \ M | \\ \texttt{let} \ x = M \ \texttt{in} \ M | \texttt{zero}|\texttt{succ}M | \texttt{pred}M | \texttt{iszero}M | \lambda \alpha.M | M \{T\} \end{split}$$

Here we have both Boolean \mathbb{B} and Nat \mathbb{N} ground types. This leads to simpler examples.

System-F utilises a system of parameterised types. The general form of these types is $\forall \alpha.T$ This defines a family of types whereby for **any** type α . For example, given an expression $M: \forall \alpha.T$, we can construct a any type of the form $M: T[\alpha \setminus T']$ such as $M: T[\alpha \setminus B]$ or $M: T[\alpha \setminus N]$

We also have what are known as type abstractions in the form of $\lambda \alpha.M$ and type applications T of the form $M\{T\}$

Our Values take the form:

$$V ::= \lambda x : T.M | \texttt{true} | \texttt{false} | \texttt{zero} | \texttt{succ} M | \lambda \alpha.M$$

We define our Call-by-value evaluation contexts as:

Which is the same as before with the extension of let, pred, iszero and type application. We also have an extended set of Call-by-value small-step operational semantics rules:

$$\frac{}{\text{pred}(\text{succ }M) \to_v M} \text{PredS}$$

$$\frac{}{\text{iszero zero} \to_v \text{true}} \text{IsZZ}$$

$$\frac{}{\text{iszero}(\text{succ}M) \to_v \text{false}} \text{IsZS}$$

$$\frac{}{(\lambda \alpha.M)\{T\} \to_v M[\alpha \backslash T]} \text{T}\beta$$

And our typing rules are as follows:

Note TABS also requires that $\alpha \notin FV(\Gamma)$ is satisfied Where $FV(\Gamma)$ is the set of free variables in Γ i.e. α should be a *new* variable with respect to Γ in the hypothesis.

$$\frac{\Gamma \vdash M : \forall \alpha.T}{\Gamma \vdash M\{U\} : T[\alpha \backslash U]} \text{ TAPP}$$

1.5.1 Examples

We previously saw that in the Simply typed λ -Calculus we could not construct a function, add of type Nat \rightarrow Nat. Using System-F this is possible through an abstracted definition of Church Numerals:

$$0 = \lambda \alpha . \lambda f : \alpha \to \alpha . \lambda x : \alpha . x
1 = \lambda \alpha . \lambda f : \alpha \to \alpha . \lambda x : \alpha . f x
2 = \lambda \alpha . \lambda f : \alpha \to \alpha . \lambda x : \alpha . f (f x)$$

Again succ has type Nat \rightarrow Nat \rightarrow Nat and add type Nat \rightarrow Nat:

$$\verb+succ+ = \lambda a : \verb+Nat-. \lambda \alpha . \lambda f : \alpha \to \alpha . \lambda x : \alpha . f(a\{\alpha\}fx) \tag{1}$$

$$add = \lambda a : Nat.\lambda b : Nat.\lambda \alpha.\lambda f : \alpha \to \alpha.\lambda x : \alpha.a\{\alpha\}f(b\{\alpha\}fx)$$
 (2)

Now, given any numeral n: Nat we can iterate over a function F of type $T \to T$ as follows: $n\{T\}F$ and we can define add more simply using succ as:

$$add = \lambda a : Nat.\lambda b : Nat.a\{Nat\}succb$$

Exemplar 1

Prove that $add = \lambda a : Nat.\lambda b : Nat.a\{Nat\}$ succb is well typed under System-F. Where $\Gamma = a : Nat, b : Nat$ and assuming succ has type $Nat \to Nat$

Remember: Nat is defined as $\forall \alpha(\alpha \to \alpha) \to \alpha \to \alpha$

$$\cfrac{ \cfrac{ \cfrac{ \Gamma \vdash a : \mathtt{Nat} }{ \Gamma \vdash a : \mathtt{Nat} } \, \mathtt{VAR} }{ \cfrac{ \Gamma \vdash a \{ \mathtt{Nat} \} : (\mathtt{Nat} \to \mathtt{Nat}) \to \mathtt{Nat} \to \mathtt{Nat} }{ \cfrac{ \Gamma \vdash a \{ \mathtt{Nat} \} \mathtt{succ} : \mathtt{Nat} \to \mathtt{Nat} }{ \cfrac{ \Gamma \vdash a \{ \mathtt{Nat} \} \mathtt{succ} : \mathtt{Nat} \vdash a \{ \mathtt{Nat} \} \mathtt{succ} b : \mathtt{Nat} }{ \cfrac{ \Gamma, b : \mathtt{Nat} \vdash a \{ \mathtt{Nat} \} \mathtt{succ} b : \mathtt{Nat} \to \mathtt{Nat} }{ \cfrac{ \Gamma, a : \mathtt{Nat} \vdash \lambda b : \mathtt{Nat} .a \{ \mathtt{Nat} \} \mathtt{succ} b : \mathtt{Nat} \to \mathtt{Nat} }{ \cfrac{ \Gamma \vdash \lambda a : \mathtt{Nat} .\lambda b : \mathtt{Nat} .a \{ \mathtt{Nat} \} \mathtt{succ} b : \mathtt{Nat} \to \mathtt{Nat} }{ \cfrac{ \Lambda \mathsf{BS} }{ \cfrac{ \Lambda \mathsf{BS} }{ \cfrac{ \Lambda \mathsf{BS} }{ \cfrac{ \Lambda \mathsf{Nat} } } } \, \mathsf{ABS} }} } } }$$

Remember: To proof something is well typed, construct a proof tree using the relevant typing rules and to prove something evaluates to a certain form use the context rules.

Exemplar 2

What does add $\underline{1} \underline{1}$ compute to?

$$\frac{ \begin{array}{c} \overline{\text{add }\underline{1} \ \rightarrow_v \lambda b: \text{Nat}.\underline{1} \ \{\text{Nat}\} \text{succ }b \end{array} \beta} }{ \text{add }\underline{1} \ \underline{1} \ \rightarrow_v (\lambda b: \text{Nat}.\underline{1} \ \{\text{Nat}\} \text{succ }b)\underline{1} } \text{ CTX}_{\bullet} \ \underline{1} } \\ \overline{(\lambda b: \text{Nat}.\underline{1} \ \{\text{Nat}\} \text{succ }b)\underline{1} \ \rightarrow_v \underline{1} \ \{\text{Nat}\} \text{succ }\underline{1} \end{array} \beta}$$

$$\frac{\frac{1}{1} \left\{ \text{Nat} \right\} \rightarrow_{v} \lambda f : \text{Nat} \rightarrow \text{Nat}.\lambda x : \text{Nat}.fx}{T\beta} }{\frac{1}{1} \left\{ \text{Nat} \right\} \text{succ } \underline{1} \rightarrow_{v} (\lambda f : \text{Nat} \rightarrow \text{Nat}.\lambda x : \text{Nat}.fx) \text{succ } \underline{1}} }{\frac{(\lambda f : \text{Nat} \rightarrow \text{Nat}.\lambda x : \text{Nat}.fx) \text{succ } \rightarrow_{v} \lambda x : \text{Nat}.\text{succ } x}{(\lambda f : \text{Nat} \rightarrow \text{Nat}.\lambda x : \text{Nat}.fx) \text{succ } \underline{1} \rightarrow_{v} (\lambda x : \text{Nat}.\text{succ } x)\underline{1}} } \text{CTX}_{\bullet \underline{1}} }$$

$$\frac{(\lambda x : \text{Nat}.\text{succ } \underline{1} \rightarrow_{v} (\lambda x : \text{Nat}.\text{succ } \underline{1})}{(\lambda x : \text{Nat}.\text{succ } \underline{1})} \beta} }{\text{succ } \underline{1} \rightarrow_{v} \lambda \alpha.\lambda f : \alpha \rightarrow \alpha.\lambda x : \alpha.f(\underline{1} \left\{ \alpha \right\} fx)} \beta}$$

This is our final stage. We cannot reduce a value any further. This value is not the same 2 that we defined earlier, but it is equivalent to it. I.e. we can define an equivalence relation between them.

1.5.2 Inductively defined data structures under System-F

We can define other data types in a similar way to how we have defined Church Numerals under System-F.

For example the list structure:

- List = $\forall \alpha. (\mathbb{N} \to \alpha \to \alpha) \to \alpha \to \alpha$
- nil:List
- $\min = \lambda \alpha. \lambda f : \mathbb{N} \to \alpha \to \alpha. \lambda x : \alpha. x$
- ullet cons : $\mathbb{N} \to \mathtt{List} \to \mathtt{List}$
- cons = $\lambda n : \mathbb{N}.\lambda l : \mathtt{List}.\lambda \alpha.\lambda f : \mathbb{N} \to \alpha \to \alpha.\lambda x : \alpha.(fn)(l\{\alpha\}fx)$

Using this encoding, we can define a list of two elements N_1 and N_2 as:

$$\operatorname{List}[N_1, N_2] : \lambda \alpha.\lambda f : \mathbb{N} \to \alpha \to \alpha.\lambda x : \alpha.(fN_1)(fN_2x)$$

1.6 Abstract Data Types

We can extend System-F to capture abstract data types through the use of existential types. The syntax of this extension can be defined as:

$$T ::= \alpha |\mathbb{B}|\mathbb{N}|T \to T | \forall \alpha.T | T \times T | \exists \alpha.T$$

$$M ::= x | \lambda x : T.M | MM | \text{true } | \text{false } | \text{if } M \text{ then } M \text{ else } M$$

$$|\text{let } x = M \text{ in } M | \text{zero}| \text{succ } M | \text{pred}M | \text{iszero}M$$

$$|\lambda \alpha.M | M \{T\}$$

$$|\langle M,M \rangle | \text{fst}M | \text{snd}M$$

$$|\text{pack}\langle T,M \rangle asT | \text{unpack}\alpha, x = MinM$$

Using existential (\exists) types we can *hide* the implementation of a type. We can say that an abstract data type is comprised of:

- An abstract name
- A concrete representation type
- A concrete implementation
- An abstract interface

Here the α in the existential type facilitates the abstract name.

Packs create abstract data types where T is the concrete representation type, and M is the concrete implementation.

We define an abstract data type in the form:

$$\operatorname{pack}\langle T, M \rangle$$
 as $\exists \alpha. U$

We extend the definition of values to include pairs and packs:

$$V ::= \lambda x : T.M | \texttt{true}| \texttt{false}| \texttt{zero}| \texttt{succ} M | \lambda \alpha.M | \langle M,M \rangle | \texttt{pack} \langle T,M \rangle$$
 as T

And our Call-by-value evaluation contexts are now:

$$\begin{split} C ::= \bullet |CM|VC| \text{if } C \text{ then } M \text{ else } M \\ |\text{let } x = C \text{ in } M|\text{pred } C| \text{iszero } C|C\{T\} \\ |\text{unpack } \alpha, x = C \text{ in } M|\text{fst } C|\text{snd} \end{split}$$

We also extend our operational semantics rules:

$$\cfrac{ \overline{ \text{fst } \langle M, N \rangle \to_v M } \text{ FstP} }{ \overline{ \text{snd} \langle M, N \rangle \to_v N } } \text{ SndP}$$

$$\cfrac{ \overline{ \text{unpack } \alpha, x = \text{ pack } \langle T, M \rangle \text{ as } U \text{ in } N \to_v N[\alpha \backslash T][x \backslash M] } } \text{ UnP}$$

We extend our typing rules as follows:

Note TABS also requires that $\alpha \notin FV(\Gamma)$ is satisfied Where $FV(\Gamma)$ is the set of free variables in Γ i.e. α should be a *new* variable with respect to Γ in the hypothesis.

$$\begin{split} &\frac{\Gamma \vdash M : \forall \alpha.T}{\Gamma \vdash M \{U\} : T[\alpha \backslash U]} \text{ TAPP} \\ &\frac{\Gamma \vdash M : T \; \Gamma \vdash N : U}{\Gamma \vdash \langle M, N \rangle : T \times U} \text{ Pair} \\ &\frac{\Gamma \vdash M : T \times U}{\Gamma \vdash \text{fst} \; M : T} \text{ Fst} \end{split}$$

$$\frac{\Gamma \vdash M : T \times U}{\Gamma \vdash \mathsf{snd} \ M : U} \, \mathsf{Snd}$$

$$\frac{\Gamma \vdash M : U[\alpha \backslash T]}{\Gamma \vdash \mathsf{pack} \ \langle T, M \rangle \ \mathsf{as} \ \exists \alpha.U : \exists \alpha.U} \, \mathsf{Pack}$$

$$\frac{\Gamma \vdash M : \exists \alpha.T \ \Gamma, x : T \vdash N : U}{\Gamma \vdash \mathsf{unpack} \ \alpha, x = MinN : U} \, \mathsf{Unpack}$$

Note: unpack requires that the condition $\alpha \notin FV(U)$

1.6.1 Existential Types - Examples

pack
$$\langle \mathbb{B}, \langle \text{true }, \lambda x : \mathbb{B}. \text{if } x \text{ then false } \text{else true } \rangle \rangle$$
 as $\exists \alpha . \alpha \times (\alpha \to \alpha)$

For this example, the concrete representation type is Boolean (\mathbb{B}), we define two operations on this type. Firstly we define a constant of true and secondly we define an operation that takes a boolean and negates it. We pack this concrete implementation inside of the pack. Visible to the user is the name α and the abstract types of the operations contained within the pack.

Another example could be the List type we defined earlier.

pack
$$\langle \mathtt{List}, \langle \mathtt{nil}, \mathtt{cons} \rangle \rangle$$
 as $\exists \alpha. \alpha \times (\mathbb{N} \to \alpha \to \alpha)$

Here the user does not know about the List type and instead is allowed to construct an α using the first operation and to construct further structures using this initial α (nil) and the second operation that takes a \mathbb{N} and a α .