Principals of Programming Languages: Revision Lecture

Sam Barrett

January 5, 2021

1 The Simply Typed A-Calculus

1.1 Syntax
The syntax of the Simply Typed A-Calculus can be defined as:

T:=BT—>T
M = x| x: T.M|M M |true|false|if M then M else M

You can see here that we use the Church style for typing whereby, variables in A abstractions
are annotated with types.
Values are atomic, i.e. they cannot be evaluated further and are of the form:

V = Az : T.M|true|false

When we compute a term we are typically trying to reduce it to a value.

1.2 Evaluation Contexts

When we want to define the call-by-value small-step operational semantics of a language we use
evaluation contexts. The Call-by-value evaluation contexts for the small-step operational semantics
of A-Calculus is defined as:

C ::=e|CM|VC|if C then M else M

A context is a term with a hole (o) in it.

You can tell that this is the call-by-value evaluation context as you can see that we always
evaluate the arguments of a application before the application itself.

These contexts yield the following rules:

B

Az : T.M)V —, M[z\V])

IteT

if true then M else N —, M

M —, N

C[M] =, C[N] CTXc

IteF

if false then M else N —, N

1.3 Typing Rules

And to facilitate the typing of these expressions we use the following typing rules:

F,x:TI—x:TVAR
x:TEM:U

F}—/\x:T.M:T—>UABS

'-M:T—-UT'-N:T

'EMN:U APP

—T
I'Ftrue:B

—F
' false: B

'FM:BI'FN:TTHP:T

ITE
I'Hif M then N else P:T

1.4 Church-Numerals

We can define Church Numerals in the Simply Typed A-Calculus as having the type Nat = (B —
B) - B — B.

0=Af:B—-BAx:Bx
1=Xf:B—BAx:B.fx
2=\f:B—=>BAx:B.f(fzx)

Essentially, the number is a counter of how many applications of f appear.
We can now define a successor function, succ of type Nat — Nat and an add function of type
Nat — Nat — Nat:

succ = Aa : Nat.Af : B — Bz : B.f(afz)
add = Aa : Nat.Ab:Nat. Af: B — Bz : B.af(bfx)

Our add function essentially concatenates the fs in a with the fs in b and our succ function
appends an f to the value a.

This encoding can be used to iterate over a function of type B — B by applying a function
f:B — B to a base case x : B n : Nat times.

nfx

However, if one wants to iterate over a function of another type, say, T — T one will need to
define a new set of Church numerals over the type T', i.e. a type of the form (T' = T) - T — T)
(This is later solved through the use of System-F’s paramerisation of types, similar to Monads)

1.4.1 Exercise 1

Can we iterate over a function of type Nat — Nat using this method? I.e. can we define add = \a :
Nat.Ab: Nat.a succ b?

For this to be possible, a would need to have the type (Nat — Nat) — (Nat — Nat). However,
our value a is of the type (B — B) — (B — B). These types are not compatible, if we were to redefine
Nat to fit this function we would end up with a recursive type definition which is not allowed within
the Simply Typed A-Calculus.

Note: This is possible using System-F

1.5 System-F
We define the Church-style syntax of System-F as:

T = o|B|N|T — T|Va.T
M =z x: T.M|MM|true|false|if M then M else M|
let =M in M|zero|succM |predM|iszeroM | a.M|M{T}

Here we have both Boolean B and Nat N ground types. This leads to simpler examples.

System-F utilises a system of parameterised types. The general form of these types is Va. T This
defines a family of types whereby for any type a. For example, given an expression M : Va. T, we
can construct a any type of the form M : T[a\T"] such as M : T[a\B] or M : T[a\N]

We also have what are known as type abstractions in the form of Aa.M and type applicationsT
of the form M{T}

Our Values take the form:

V = Az : T.M|true|false|zero|succM | a. M

We define our Call-by-value evaluation contexts as:

C ::=e|CM|VC|if C then M else M|let x =C in M|pred C|iszero C|C{T}

Which is the same as before with the extension of let, pred, iszero and type application.
We also have an extended set of Call-by-value small-step operational semantics rules:

B

A : T.M)V —, M[z\V]

M —, N

C[M] —, C[N] CTXc

IteT

if true then M else N —, M

if false then M else N —, N IteF

letr = VinM —, M[z\V] LetV

PredZ

pred zero —, zero

PredS
pred(succ M) —, M re

- IsZZ
iszero zero —, true

IsZS

iszero(succM) —, false

D (T} =y Mo P

And our typing rules are as follows:

Fe:Trx:T VAR

Fa:THEM:U
I'tXe:TM:T—U

ABS

'-mM:T—-UT'EN:T

TEMN:U APP

'k true: B T

'+ false: B F

I'-M:BI'EN:TT'HP:T
I'tif M then N else P:T

ITE

I'Fzero: N z

I'HM:N

I'F succM : N S

I'HFM:N
I't-predM : N

P

I'HM:N
'+ iszeroM : B

I

I't-M:TT,x2:THFN:U
I'tletz =M in N:U

LET

I'-M:T
' Aa.M :Va.T

Note TABS also requires that « ¢ FV(I") is satisfied Where FV(I") is the set of free variables
in I' i.e. a should be a new variable with respect to I' in the hypothesis.

TABS

I'EM:Va.T

TFM{UY: Tla\] PFF

1.5.1 Examples

We previously saw that in the Simply typed A-Calculus we could not construct a function, add
of type Nat — Nat. Using System-F this is possible through an abstracted definition of Church

Numerals:

AaAfra— adr: ax
AaAfa— adr:afo
AaAf o= adr:af(fx)

0
1
2

Again succ has type Nat — Nat — Nat and add type Nat — Nat:

succ = Aa : Nat. da A f:a — adz: a.f(a{a}fx) (1)
add = Aa : Nat.\b: Nat. A Af : @ = a)z : a.a{a}f(b{a}fz) (2)

Now, given any numeral n : Nat we can iterate over a function F' of type T' — T as follows:
n{T}F and we can define add more simply using succ as:

add = Aa : Nat.\b : Nat.a{Nat }succh

Exemplar 1
Prove that add = Aa : Nat.Ab : Nat.a{Nat}succd is well typed under System-F. Where I" = a :

Nat, b : Nat and assuming succ has type Nat — Nat
Remember: Nat is defined as Va(a - a) > a — «

VAR

I'-a: Nat
TAPP
't a{Nat} : (Nat — Nat) — Nat — Nat 't succ: Nat — Nat APP A
—— 5 . VAR
' a{Nat}succ : Nat — Nat F'Fb:Nat
APP
T,b: Nat b a{Nat}succh : Nat
ABS

I',a : Nat - \b: Nat.a{Nat}succh : Nat — Nat
't Aa:Nat.Ab: Nat.a{Nat}succh : Nat — Nat — Nat

ABS

Remember: To proof something is well typed, construct a proof tree using the
relevant typing rules and to prove something evaluates to a certain form use the context

rules.
Exemplar 2
What does add 11 compute to?

add 1 —, \b:Nat.l {Nat}succ b

CTXe 1
add 11 —, (A\b:Nat.l {Nat}succ b)1 -

(Ab : Nat.l {Nat}succ b)1 —, 1 {Nat}succ 1

T
1{Nat} —, Af : Nat — Nat.\z : Nat.fx p
1 {Nat}succ 1 —, (Af:Nat — Nat.Az : Nat.fz)succ 1

CTXcsucc 1

(\f : Nat — Nat.\z : Nat.fz)succ —, Az : Nat.succ z
(\f : Nat — Nat.\z : Nat.fz)succ 1 —, (Az: Nat.succ z)l

CTX.;

(Az : Nat.succ z)l —, succ 1

succ 1 =, daf:a— adr:af(l{a}fz) b

This is our final stage. We cannot reduce a value any further. This value is not the same 2 that
we defined earlier, but it is equivalent to it. I.e. we can define an equivalence relation between them.
1.5.2 Inductively defined data structures under System-F

We can define other data types in a similar way to how we have defined Church Numerals under
System-F.
For example the list structure:

e List=Va.Noa—a)s>a—a

e nil : List

e nil = daAf:N—a—alx:ax

e cons: N — List — List

e cons = An: N : ListdaAf:N—= a— adr: a(fn)({a}fx)

Using this encoding, we can define a list of two elements N; and N> as:

List[N1, No] : daAf : N = a = a x : a.(fN1)(fNax)

1.6 Abstract Data Types

We can extend System-F to capture abstract data types through the use of existential types.
The syntax of this extension can be defined as:

T :=aB|N|T - T\Va.T|T x T|3.T

M :=z| x: T.M|MM|true |false |if M then M else M
|let x = M in M/|zero|succ M|predM |iszeroM
[Aa.M|M{T}
[(M, M)|fst M |snd M
|pack(T, M)asT [unpacka, x = MinM

Using existential (3) types we can hide the implementation of a type.
We can say that an abstract data type is comprised of:

An abstract name

A concrete representation type

A concrete implementation

e An abstract interface

Here the « in the existential type facilitates the abstract name.

Packs create abstract data types where T is the concrete representation type, and M is the
concrete implementation.

We define an abstract data type in the form:

pack(T, M) as Ja.U

We extend the definition of values to include pairs and packs:

V = Az : T.M|true|false|zero|succ M| a. M|(M, M)|pack(T, M) as T

And our Call-by-value evaluation contexts are now:

C ::=e|CM|VC|if C then M else M
|let © =C in M|pred C|iszero C|C{T}
|unpack a,z =C in M|fst C|snd

We also extend our operational semantics rules:

A : T.M)V —, M[z\V] b
M —, N

CIM] =, O[N] TT%¢

if true then M else N —, M TteT

IteF

if false then M else N —, N

LetV

letx = VinM —, M[z\V]

PredZ

pred zero —, zero

PredS

pred(succ M) —, M

IsZZ

iszero zero —, true

IsZS

iszero(succM) —, false

Do M{TT =y MaT] P

FstP
st (M,N) =y M °°

SndP
snd(M,N) >, N

unpack a,z = pack (I,M) as U in N —, N[a\T|[z\M] UnP

We extend our typing rules as follows:

Fe:Trx:T VAR
Fe:THEM:U

I'tXe:TM:T—U ABS

'-mM:T—-UIEN:T
I'FMN:U

APP

I'F true: B T

I'F false: B F

'FM:BI'EFN:TTHP:T

I'Hif M then N else P:T TTE

I'Fzero: N z

I'-M:N
I' succM : N

S

I'HFM:N

I' - predM : N P

I'M:N
I'+iszeroM : B

I

'-M:TT,2:THN:U
I'Fletz =M in N:U

LET

I'-M:T
'k Aa.M :Va.T

Note TABS also requires that « ¢ FV(T') is satisfied Where FV(T") is the set of free variables
in I' i.e. « should be a new variable with respect to I' in the hypothesis.

TABS

I'EM:Va.T
' M{U} : T[a\U]

TAPP

I'FM:TTFN:U
TF(MN):TxU

Pair

T'EM:TxU
I'Hfst M: T

Fst

I'EM:TxU
I'bsnd M:U

Snd

Tk M :Ula\T)

Pack
'k pack (T, M) as Ja.U : 3a.U ac

'M:3aTT,2:THN:U
I' - unpack a,z = MinN : U

Unpack

Note: unpack requires that the condition a ¢ FV(U)

1.6.1 Existential Types - Examples
pack (B, (true ,Az:B.if z then false else true)) as Ja.a X (a —)

For this example, the concrete representation type is Boolean (B), we define two operations on
this type. Firstly we define a constant of true and secondly we define an operation that takes a
boolean and negates it. We pack this concrete implementation inside of the pack. Visible to the
user is the name « and the abstract types of the operations contained within the pack.

Another example could be the List type we defined earlier.

pack (List,(nil,cons)) as Ja.a X (N—= a = a)

Here the user does not know about the List type and instead is allowed to construct an o using
the first operation and to construct further structures using this initial « (nil) and the second
operation that takes a N and a a.

