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Compiler books often focus on the task of compiling the C programming language. This was
intentionally not the focus of this submodule.

Figure 1: Compiler Flow
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1 Lexical Analysis

Lexical analysis, the job performed by the Lexer is the first stage of compilation. It converts a
source file written in a specific programming language into a string of tokens. Or alternatively,
string =⇒ list of “lexemes”

For example, the code:

fold (+) [1;2] 0 =⇒
identifier open-round-bracket operator

close-round-bracket open-square-bracket constant

semicolon constant close-square-bracket constant

Lexemes are specified using regular expression which, in turn, are implemented using finite state
automata.

For example, a simple Regular Expression capturing the lexeme of numbers:

num = [+-]?[1-9][0-9]∗

Backtracking is the dumb approach to parsing regular expressions. It is also known as the brute
force method as in the worst case scenario, all possibilities could be tried before the approach gives
up.

Such an expression which is tricky to parse using backtracking is:

tricky = a?a?aa

Every occurrence of the optional (?) doubles the number of possible routes through a parse
tree of this expression. Meaning an input such as aaaaa would cause an evaluator to explore every
possible branch of this tree before determining that it is not captured.

1.1 Finite State Automata

A better approach is to use Finite state automata. This approach was originally proposed by Ken
Thompson.

Using FSA our tricky regex can be converted to the following Deterministic Finite State Au-
tomaton or DFA.

0 3 4 2 1 5
a a a a a

a

However, the process to create a DFA is computationally expensive. Therefore, Thompson’s
algorithm instead operates over Non-deterministic finite state automata. It works by keeping track
of all the positions in the DFA where we could be given the string we have seen so far.
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2 Parsing

In this stage of the process where the sequence of tokens generated by the lexer is transformed into
the Abstract Syntax Tree (ASG) of the program. An ASG is a record of the grammatical structure
of the program and is essential to the correct interpretation of a program.

2.1 Grammars

A grammar is a set of rules. They are defined using Terminals and Non-Terminals. They are
differentiated by the fact that during every application of a rule, the non-terminal occurring on the
left-hand side (see below) is replaced by a sequence of terminals and non-terminals appearing on
the right-hand side.

An example grammar could be:

E → N |E + E|E ∗ E

When used as a production system our rule(s) is(are) repeatedly applied to a designated starting
symbol until we produce an expression comprised exclusively of terminal symbols.

For example:

E → E + E apply E → E + E

→ E ∗ E + E apply E → E ∗ E
→ 42 ∗ E + E apply E → N

→ 42 ∗ 35 + E apply E → N

→ 42 ∗ 35 + 17 apply E → N

We can also run this process in reverse to convert a string of terminal symbols back to the
starting non-terminal E.

We can however, recognise an issue with this process whereby, the set of possible operations at
any given point is greater than 1. i.e. the process is not deterministic.

For example:

E

E

E

42

* E

35

+ E

17
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E

E

42

* E

E

35

+ E

17

These trees are both valid under this grammar but they are not both valid mathematically. This
is because the grammar does not embed the strength of the operators.

(42 ∗ 35) + 17 6= 42 ∗ (35 + 17)

Ambiguity and non-determinism are some of the biggest issues faced when constructing a gram-
mar indented for use as a production system or parsing. It has been shown that the ambiguity of
context-free grammars is an un-decidable problem, i.e. there is no way to construct a program that
can decide whether a given grammar is ambiguous. This leads to the designing of grammars more
of an art relying on the experience of the creator and the use of heuristics.

We can re-write our original grammar in a non-ambiguous way to prevent the formulation of
strings that can have conflicting parse trees.

E → S + S|S
S →M ∗M |M
M → (E)|N

E

S

M

42

* M

35

+ S

M

17

Above you can see that our valid example can be constructed using this new grammar but below
you can see that the semantically invalid tree is now also structurally invalid:
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??

S

M

42

* E

S

M

35

+ S

M

17

2.2 Top-down parsing

2.2.1 Recursive Descent

Recursive descent means we start at the top with our starting non-terminal, in this case E. We
then apply rules until we reach a string comprised entirely of terminals, if the terminals match the
string we are trying to generate then the string is valid otherwise we backtrack and apply different
rules. We repeat this process until we either exhaust all possible valid combinations of rules or we
match the terminals.

From the section on Lexical Analysis we know that backtracking is rarely a good solution as it
has very poor worst-case complexity (exponential).

2.2.2 LL(k) Parsing

There is an improved version of top-down parsing called LL(k) or left-to-right leftmost derivation
with k tokens lookahead. The benefit of a lookahead is that it is able to disambiguate the application
of the rule. The caveat is that the grammar has to be written in a compatible way for this system
to work.

The LL(1) form of our grammar is formulated as such:

E → TE′

E′ → +E|ε
T → FT ′

T ′ → ∗T |ε
F → N |(E)

Grammars of this type can be constructed algorithmically from an already deterministic gram-
mar. However, not all grammars can be put into LL(1) form. It has been shown that it is
undecidable whether given a grammar there is a fixed value of k s.t. the grammar can be put into
LL(k) form.

2.2.3 Monadic Parsing

In order to avoid backtracking we build on the fact that we have seen that we can often replace
time complexity with space complexity.

5



Simply speaking, in this approach we remember, inside of a data structure, the choices we have
not made. i.e. in a list we store all the possible rules and evaluate all of them at the same time,
discarding invalid trees until we either run out of trees or find one that is valid.

2.3 Bottom-up parsing:

2.3.1 LR(k): left-to-right rightmost derivation with k tokens lookahead (LALR)

Here we start at the bottom with our terminal string and apply rules until we reach our starting
non-terminal. We again utilise k lookahead to disambiguate rules as we apply them, this allows us
to discount a rule earlier if we see that it doesn’t reduce to a required intermediary form.

There are a few problems which can arise when using LALR parsers.
One of these issues is known as a shift-reduce conflict. A typical example of a shift-reduce

conflict is if-then-else in languages that permit both if-then and if-then-else syntactic structures.
For example:

if x then if y then a else b

Is this mean to be processed as:

if x then{if y then a} else b

or

if x then{if y then a else b}

These are usually disambiguated by the parser mechanism preferring the shift to the reduce.
Essentially, always trying to construct the longest possible parses.

A more problematic type of conflict is the reduce-reduce conflict.

Seq→ ε

|Maybe
|Seq a

Maybe→ ε

|a

Here we can derive a with 2 different parse trees, either via the Seq structure or Maybe structure.
When you have one of these conflicts it is unclear which operation is going to happen and

generally the execution order boils down to the order of the rules in the grammar definition.
Note: both of these conflicts are typically unavoidable in a large grammar, miti-

gating them is an art rather than a science.
Larger parsers are generally not written by hand and are instead generated using a Parser

generator such as YACC, Bison, Parsec, etc.
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3 Intermediate Representation

3.1 Abstract Syntax Trees (ASTs)

After the parse tree is created, it needs to be processed further so that it is easier to execute/compile.
It is easier to initially consider interpretation. We want to, given an abstract syntax tree, interpret
the expression that the Abstract syntax graph represents.

For example given the input string:

(1 + 2) + (3 + 4)

We token-ise it to get:

( 1 + 2 ) + ( 3 + 4 )

where underlined values are individual tokens.
We then construct a parse tree of this tokenised string:
Note: the names of the terminals/non-terminals is unimportant

4+3+2+1

Notice how we have removed the brackets; once the tree has been created, the brackets become
implicit. We can also push the operators onto the parent nodes to produce an equivalent but
prettier Abstract syntax tree:

+

+

43

+

21

We can show program execution as transformations on these Abstract Syntax Trees. How do we
know what order to apply these transformations? We use a fixed traversal method such as Depth
first left-right traversal.

The application of this form of traversal on our exemplar can be seen in Figure 2
ASTs do not cope well with variable names however, this is a big issue as variables are key in

useful programming languages.
We will be focusing on immutable variables in the examples below.

let x = 1+2 in x + x

This is an example of a ternary statement, i.e. it has 3 components. It can be drawn as the
following AST:
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Figure 2: Depth-first L-R traversal
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let

+

xx

+

21x

With this representation we are left with variable names on the leaves of the tree, with no
reference back to their definition. If we were to evaluate this in the same way as we did previously
we produce the following tree:

let

+

xx

3

x

When we reach the first x reference, we are forced to backtrack through the tree in order to
find it’s associated value. This is extremely inefficient, especially in the case where we have nested
variable usage, for example in:

let x = 4+5 in let x = 3+2 in x+x

When evaluating this expression we must be careful about the scope of the variable(s) x as it
has multiple definitions within the same expression.

We must find a better solution to this problem. We do this by converting our tree into a Directed
acyclic graph (DAG), turning our AST into an Abstract Syntax Graph (ASG)

3.2 Abstract Syntax Graphs (ASGs)

We can draw the ASG of our original let expression as such:

+

+

1 2

We can now apply our Depth-first left-to-right evaluation order easily and efficiently. However,
rememebr we are no longer performing a tree traversal but a graph traversal. The evaluation of
this ASG can be seen below:

Converting from ASTs to ASGs introduces some compile-time overhead but allows for much
more efficient execution of ones code.
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Figure 3: ASG Traversal

3.3 Hierarchical Abstract Syntax Graphs

Functions in the context of the λ-Calculus only have 2 operations we would need to be concerned
with with respect to an abstract intermediate representation: 1) Abstraction 2) Application. How
can we encode these into ASGs?

Function Application
x0, . . . , xn︸ ︷︷ ︸

Γ

, y0, . . . , yn︸ ︷︷ ︸
∆

` f(m)

Here we represent the identifiers of f by Γ and the identifiers ofm by ∆. We can consider function
application as an operator. Therefore to construct an ASG of this expression, we construct the ASG
of f and the ASG of m and combine them using an application operator, represented as @.

@

f m

∆Γ

Here the stricken through lines represent many lines (1 . . . n)
When we apply a function we carry out what is known as the small β rule. It can be formulated

as:

(λx.f)m→ f [m\x]

This is very similar to the rules we have seen in operational semantics.
Function Abstraction

x0, x1, . . . , xn︸ ︷︷ ︸
Γ

` λx0.m
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In the above ASG you can see the representation of a λ-abstraction. The bound variable x0

does not leave the scope of the abstraction (denoted by the outermost box).

3.3.1 Examples

1.
λx.x+ x+ 1
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2.
let y = 1 in λx.x+ x+ y

3.
let y = 1 in let f = λx.x+ x+ y in f(f(y))
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3.4 Note from Revision Lecture

We must be aware of the distinction between a compiler evaluation and optimisation.
Abstractly, a evaluation is a set of abstract syntax graph transformations applied according to

a schedule. For a call-by-value programming language this takes the form of a depth first search
traversal of the ASG with reductions applied on the path back up the tree towards the root.

A compiler optimisation is applying some transformations that make the code simpler and faster
in an arbitrary order

A compiler optimisation is applying some transformations that make the code simpler and
faster in an arbitrary order. Optimisations often have conditions that have to be met for them to
be applied. An example of a compiler optimisation is closure conversion. Closures being anonymous
functions.

In a closure conversion we want to pull inner (anonymous) functions into global scope. However,
this raises an issue: what do we do with the variables of the closure which are bound in the enclosing
function? We solve this using a notion of environment and transforming all functions in a uniform
way.

4 Types

Types first appeared as an attempt to give a foundation of mathematics using the λ-Calculus via
the Curry-Howard correspondence whereby a proposition corresponds to a type and a program
corresponds to a proof.

Initially, the point of types in the Simply typed λ-Calculus was to ensure that a given program
will always terminate. Modern usages are to prevent runtime errors in programs.
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In the Curry-Howard correspondence, we can consider a value u : T as a predicate T (u) which
states that ’u has type T ’. This is what is known as a type judgement, type judgements are proved
using logically formulated typing rules.

4.1 Type Checking

Given a program, u which takes typed variables x0, . . . , xn we can perform a type judgement that
u has type T

x0 : T0, . . . , xn : Tn ` u : T (≡) Γ ` u : T

Γ ` u : T → T ′ Γ ` v : T Implication elimination
Γ ` u(v) : T ′

Γ, x : T ` u : T ′
Implication introduction

Γ ` λx.u : T → T ′

Here it is the parallels between logical implication and functions as expressed by the Curry-
Howard correspondence are clear.

We can extend this to work for other types such as Product and Sum types. For product types
we have the rules:

Γ ` u : T1 × T2 Conjunction Elimination
Γ ` proji(u) : Ti

Γ ` ui : Ti Conjunction Introduction
Γ ` (u1, u2) : T1 × T2

Using this pattern we can define the function types for references:

refT : T → ref(T )

assgT : ref(T )→ T → ()

derefT : ref(T )→ T

We can go on to define increasingly complex types with this pattern, however, not all languages
implement these. One such example is dependant types which are available in proof assistants
such as Agda and Idris. They allow for the embedding of conditions into the type of a function, for
instance the function ”nth” can be defined simply as:

n : Int -> (xs : 'a List) -> 'a

However, this allows for runtime errors, for instance in the case where n > length xs == true

the function would crash.
In languages with dependant types we can embed the proof that this isn’t true in the type of

the function:

n : Int -> (xs : 'a List) -> (n < length xs) -> 'a
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4.2 Type Inference

Type inference is the process whereby given a term, we have to decide whether it is possible to
assign types to variables so that according to our typing rules our term will now typecheck.

There are various methods such as the Hindley-Milner algorithm which works by collecting a
set of equations from the AST created by denoted types with variables and solving the system of
equations using the principals of reduction and unification.

The Hindley-Milner algorithm in the worst-case scenario has exponential time complexity. How-
ever it’s average case is more acceptable.

For examples of constructing the ASTs mentioned above, see the video lecture.

5 Assignment

Programming languages that have operations that are not representable in the λ-Calculus have
what are known as side effects. Languages that go without these features are called pure.

However, if you want to add machine dependant operations such as assignment or IO the
language becomes effectful or impure

Assignment

x := u

x = x + 1 == x = !x + 1 //true

Above you can see an example of assignment within an imperative language. The second line
shows how most language add implicit de-reference when working with variable values.

More abstractly, this can be written:

let x = U in V

Where U is our assigned value and V is the block in which it is in scope. This can be represented
as the following AST:

:=

variable value

!

variable
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Above you can see that we represent a variable, v as a thunk. This is an alternative use for
thunks, we previously used them when constructing functions, notice in this case we omit the
bottom λ node.

Example

var x = 0 in x := !x + 1

var

0 :=

+

! 1

x

x

Parsing this depth-first left-to-right we find values on both sides of our var operation. Informally,
our rewrite operation will be:

• allocate/ create variable

• initialise to 0

• bind to x

This produces the following ASG:

:=

+

! 1

0
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6 Code Generation

’Abstract machines give you the cake.’
’Compilers give you the recipe.’
—Dan Ghica

Only touched on briefly due to complexity. Essentially, code generation is the final process of
compilation. If Abstract machines execute the program, Compilers (via code generation) say what
to do.

7 Tips for the Exam

1. Very similar to the summative assignment.

2. Use SPARTAN
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