
Computation & Robot Vision: Lecture 2, Camera

parameters

Sam Barrett

February 11, 2021

Digital images are fundamentally spatially discrete, meaning they are di-
vided up into a countable number of subsections. Usually, these subsections
take the form of rectangular picture elements or pixels.

Note: the perspective equation derived in the previous lecture is only valid
when all distances are measured from the camera’s reference frame and when
image coordinates have their origin at the image centre, where the axis of sym-
metry of the camera pierces the retina or sensor.

In practice, the world and camera coordinate systems are related by a set of
physical parameters including:

• The focal length f of the the lens

• the size of the individual pixels on the sensor.

• the position of the image centre

• the position and orientation of the camera.

There are a number of issues with this system however, including that one
unit in the camera’s coordinate system may not be the same as one unit in
the world coordinate system (resulting in perspective shift or objects appearing
relatively larger than they actually are). This is related to what is known as
the intrinsic parameter problem where intrinsic parameters include focal
length, principal point, aspect ratio and the angle between the axis.

Another issue is that a cameras coordinate system will have a different posi-
tion and rotation in space to that of the world. This is related to the extrinsic
parameter problem

U
V
W

 =

transformation representing intrinsic parameters︷ ︸︸ ︷1 0 0 0
0 1 0 0
0 0 1 0

 ·


X
Y
Z
T


︸ ︷︷ ︸

transformation representing extrinsic parameters

1

1 Single-view geometry

Here we work with a single camera. Imagine there is one point in a world 3D
coordinate system (c.s.), P . Our 3D c.s. has some origin O, so we can now
represent P in the world with a set of coordinates relative to O. We want now
to project P onto the image plane, the image plane is located in the camera 3D
c.s., which is separate from the world c.s.. We can have two different kinds of
projection:

1. “Extrinsic” projection: the 3D world coordinate system should be pro-
jected onto the 3D camera coordinate system

2. “Intrinsic” projection: the 3D camera coordinate system should be pro-
jected onto the 2D image plane.

1.1 Intrinsic projection

The steps of an intrinsic projection are as follows:

• Given a point P in the camera 3D coordinate system which is measured
in metres

• We project P onto the camera image plane, also measured in metres

• We then project from our 2D image plane to a discretisesd image which
is measured in pixels

1.1.1 Homogeneous co ordinates

Euclidean geometry uses the Cartesian coordinates system, however, for a
projective geometry, homogeneous coordinates are more appropriate.

Conversion is simple: add an extra element at the ’end’ :

Cartesian form︷︸︸︷[
x
y

]
→

Homogeneous form︷︸︸︷xy
1


This system has the benefit that if a point is multiplied by a non-zero scalar

value w, our point does not change:xy
1

 ≡
wxwy
w


In order to convert from a homogeneous to a Euclidean system: divide by

the last coordinate to make it equal to 1 and ignore it.

2

1.1.2 Concepts

• Principal axis: this is a line from the camera centre perpendicular to the
image plane.

• Principal point: this is a point where the principal axis punctures the
image plane

• Normalised camera coordinate system: this is a system with its origin at
the principal point

1.1.3 Pinhole camera: revisited

With our new coordinate system, we can now revisit the pinhole camera from
the previous lecture.

A 3D point in the world coordinate system can be mapped to a 2D projection
in the image plane as follows: 

X
Y
Z
1

 7→
f XZf YZ

1


This can be represented as a vector-matrix multiplication:

x︷ ︸︸ ︷fXfY
Z

 =

f 0
f 0

1 0


︸ ︷︷ ︸

P0

X︷ ︸︸ ︷
X
Y
Z
1


which can also be written

x = P0X

We can re-write the projection matrix P0 to separate the focal lengths:

P0 = diag([f, f, 1])[I|0] =

f f
1

1 0
1 0

1 0


1.1.4 Image plane to image pixels

• Our normalised camera coordinate system has it’s origin at the principal
point p = [px, py]T.

• Our image coordinate system has it’s origin in the corner of the image
sensor.

3

Figure 1: Figure showing camera and image coordinate systems

This can be seen in Figure 1
Moving our camera coordinate system origin to p makes our calculations

much easier as we only need consider positive numbers. It allows our transfor-
mation seen above to become:

(X,Y, Z) 7→ (f
X

Z
+ px, f

Y

Z
+ py)

Which, in vector-matrix multiplication becomes:

fX + Zpx
fY + Zpy

Z

 =

f 0 px 0
0 f py 0
0 0 1 0



X
Y
Z
1


1.1.5 From image plane to image pixels

We now want to project onto our sensor of size Ws × Hs (in metres). We
represent pixels in a rectangular Mx ×My matrix.

Let mx = Mx

Ws
and my =

My

Hs

We now construct the following projection in vector-matrix multiplication
form:

xy
z

 =

mx 0 0
0 my 0
0 0 1


︸ ︷︷ ︸

pixel /m

f 0 px 0
0 f py 0
0 0 1 0


︸ ︷︷ ︸

m


X
Y
Z
1


Which can also be written:

4

xy
z

 =

αx 0 x0 0
0 αy y0 0
0 0 1 0



X
Y
Z
1


It is often difficult to guarantee a perfectly rectangular sensor, so we also have

a case for a skewed sensor, here we simply add a single value to the projection
matrix P0 to form:

xy
z

 =

αx s x0 0
0 αy y0 0
0 0 1 0



X
Y
Z
1


We can decompose P0 into two separate matrices to allow for easier compu-

tation and reasoning, we can construct P0 from the product of a square matrix
K and a concatination of the 3× 3 identity matrix and a 3D 0-vector:

P0 = K[I|0] =

αx s x0
0 αy y0
0 0 1

1 0 0 0
0 1 0 0
0 0 1 0


We refer to K as our projection matrix which prescribes the projection

of any 3D point in the camera coordinate system onto our pixels.
Where:

• αx = mx · f

• αy = my · f

• x0 = px ·mx

• y0 = py ·my

• s is our skewness factor

1.2 Extrinsic Projection

Here we are concerned with how to project the world coordinate system onto
the 3D camera coordinate system.

The 3D camera coordinate system is related to the 3D world coordinate
system by a rotation matrix R and translation t̃ = C̃

In Euclidean terms we can write this process of translation followed by ro-
tation as:

X̃cam = R(X̃ − C̃)

Our camera is specified by a calibration matrix K, the projection centre in
the world coordinate system is given by C̃ and a rotation matrix R. A 3D point

5

given in (homogeneous) world coordinates X is projected onto pixels x by the
following relation:

x = K[I|0]X̃cam = K[R|t]X = PX

Where:

• P = K[R|t]

• t = −RC̃

Lenses add more complexity through non-linearity, previously straight lines
are no longer straight, leading to image distortion.

Lens distortion assumes radially symmetric lenses. We radially expand an
image to un-distort it, here only the point changes, not the angle.

Our extrinsic parameters include camera rotation and camera translation.

1.3 Vanishing Points

We can now give a more robust definition of vanishing points,

If we consider a point on one of two parallel lines l1 and l2, A =

XA

YA
ZA

 and

a vector D from A, D =

XD

YD
ZD

.

A point on a the line X(λ) = A + λD is projected to a point x(λ) in the
image plane by:

x(λ) =

[
x
y

]
=

[
f XZ
f YZ

]
=

[
f(XA+λXD)
(ZA+λZD)
f(YA+λYD)
(ZA+λZD)

]
Here we can see that as X(λ)→∞, x(λ) tends towards the vanishing point,

v.

v = lim
λ→∞

x(λ) = lim
λ→∞

[
f XA+λXD

ZA+λZD

f YA+λZD

ZA+λZD

]
Giving us a vanishing point of:

v =

[
f XD

ZD

f YD

ZD

]
Our vanishing point depends on the direction D and not on the point A,

meaning that a different set of parallel lines even if they share a point, have a
different vanishing point.

6

1.4 Homography

Homography is the process of projecting points or images from image plane to
image plane. It has many uses from Image stitching to augmented reality.

In order to estimate the homography we must find all corresponding points
between the two image planes.

Assuming we know all corresponding points between x and x′ we can repre-
sent the translation as:

wx′ = Hx

Or,

w

x′y′
1

 =

H11 H12 H13

H21 H22 H23

H31 H32 H33

xy
1


Where the elements of H can be estimated by applying a direct linear trans-

form or DLT.
For each corresponding point i we have:

wx′i = Hxi

w

x′iy′i
1

 =

H11 H12 H13

H21 H22 H23

H31 H32 H33

xiyi
1

 =

hT1hT2
hT3

Xi =

hT1Xi

hT2Xi

hT3Xi


As these are equal, by the definition of cross-product:

x′i ×Hxi = 0

We can rearrange this vector product into a a vector-matrix product:

x′i ×

hT1 xihT2 xi
hT3 xi

 =
[
x′i×

] xTi h1xTi h2
xTi h3

 =

 0 −1 y′i
1 0 x′i
−y′i x′i 0

xTi h1xTi h2
xTi h3


We can then multiply these matrix terms and expose the homography terms

h1, h2, h3 into a single vector:

x′i ×Hxi =

 0T −xT
i y′ix

T
i

xTi 0T −x′ixTi
−y′ix


I fucking give up, fuck this

7

