
Computer Robot Vision: Lecture 3

Sam Barrett

February 17, 2021

1 Image Gradients & Edges

1.1 Edge Detection

The goal of edge detection is to take an image and map it from a 2D array of
pixel values to a set of curves, line segments or contours. In so doing we filter
out less relevant information whilst preserving important structural properties.

The main idea is to look for strong gradients in the pixel values. This allows
us to loosly define an edge as a place of rapid change in the image intensity
function. The first derivative of the intensity function over a horizontal section
of pillar should show two spikes corresponding to each edge of the object.

We can express the partial derivative f(x, y) for a 2D function as:

δf(x, y)

δx
= lim
ε→0

f(x+ ε, y)− f(x, y)

ε

For discrete data, such as images, we can approximate this using finite dif-
ferences:

δf(x, y)

δx
=
f(x+ 1, y)− f(x, y)

1

We can also efficiently perform this operation using matrix convolution. We
can think of an image gradient as being separate in the x and y direction, as

such we must calculate the image gradient of both, δf(x,y)
δx and δf(x,y)

δy
The filter for constructing the x derivative is simply:

-1 1

The filter for the y direction is: check

-1

1
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The image gradient can be obtained as the partial derivative of the intensity
values of an image in the x and y direction and can be denoted as:

∇f =

[
δf

δx
,
δf

δy

]
With this value we can define:

• The gradient direction, or orientation of edge normal. It is given by:

θ = tan−1(
δf

δy
/
δf

δx
)

• The edge or gradient strength is given by the gradient magnitude:

‖∇f‖ =

√(
δf

δx

)2

+

(
δf

δy

)2

1.1.1 Effects of noise

For any real-life image, if we consider a single row or column of the image and
plot its intensity as a function we see a noisy signal. This noise effects our
derivative as this noise is amplified by derivation.

Different filters have different sensitivity to noise. What can we do to tackle
it?

One solution is to smooth our image first. One way of doing this is using
the Gaussian kernel which can be seen in Figure 1

Figure 1: Effect of Gaussian smoothing on noisy function
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In order to find edges in such an example, simply look for peaks in δ
δx (h?f),

where h ? f is f convolved with the kernel h.
Convolution has many nice properties including being transitive and com-

posable, allowing us to say that δ
δx (h ? f) ≡ ( δ

δxh) ? f , this allows us to store
the Gaussian derivative as a filter and perform one less step when finding the
edges in a noisy function f .

There are other popular kernels including Prewitt, Sobel and Roberts.
Every smoothing mask has the following properties:

• Positive values

• all values sum to 1, as they take averages from surrounding pixels this
makes sure the overall intensity of the image stays the same in areas of
constant intensity.

• Amount of smoothing is proportional to the size of the mask

• They remove high frequency components, meaning the filter also acts as a
low-pass filter.

We sometimes want to go further, we can take the second derivative by
finding the derivative of our Gaussian derivative filter, this is known as the

Laplacian of Gaussian filter ∇2hσ = δ2

δx2h. When this filter is applied the
edge is where the resulting graph crosses the x axis. These results are often
more precise than the 1st derivative.

The size, σ of our kernel effects the sharpness and the structures found,
choosing σ depends on the task at hand.

1.2 Laplacian Pyramid

This operation can be performed recursively and works by taking an image Li
and convolving it with our Gaussian filter t produce Gi, this resulting smoothed
image is then up-scaled by injecting 0s in between each row and column before
applying the Laplacian operator to produce an image Li. As i → n, the edges
in Li get thicker.

As i increases, only the thicker edges are present.

2 Edge detection and matching

We have seen the first step in edge detection in the previous section, smoothing.
We will now look at the subsequent steps of Edge enhancement whereby we
increase the contrast between edges and the background (via differentiation)
and Edge localisation where we determine which local maxima are edges and
which are noise.
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2.1 Thresholding

The process of thresholding is as follows:

• Choose a threshold t

• set any pixels less than t to 0

• Set any pixels greater than t to 1

The standard thresholding procedure can also be defined formally as:

E(x, y) =

{
1 if ‖∇f(x, y)‖ > t for some threshold t

0 otherwise

This process can only select strong edges and does not guarantee continuity.

2.2 Hysteresis Thresholding

An alternative method of thresholding is known as Hysteresis thresholding.
It uses 2 thresholds tl, th, to represent a high and low boundary.

Note: usually th = 2tl.

‖∇f(x, y)‖ ≥ th definitely an edge

t ≥‖∇f(x, y)‖ < th maybe an edge, depends on the neighbouring pixel classifications

‖∇f(x, y)‖ < tl definitely not an edge

Results of hysteresis thresholding often have better contour connectivity, i.e.
more likely for entirely of edge to be preserved.

foreach position (x, y) do
if if ‖∇f(x, y)‖ < th then

discard pixel (x, y)
else

keep pixel (x, y) as it is strong, and definitely an edge
end

end
foreach kept pixel do

foreach connected pixel (x, y) (different notions of connectedness
see Section 3.5) do

If ‖∇f(x, y)‖ ≥ tl re-add the pixel, it is a part of an edge
end

end
Algorithm 1: Hysteresis Thresholding
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2.3 Non-maximum suppression

This is a thinning operator, and transforms wide ridges to a single pixel wide.
It does this by removing non-maximal pixels whilst preserving edge connec-

tivity.
It does this by:

• Checking if a pixel is a local maxima along the gradient direction

• Selecting a single maximum across the width of the edge

This sometimes requires interpolation if the gradient direction points to-
wards the middle of 2 pixels.

Figure 2: Non-maximum suppression

for each pixel (x, y) do
if magn(i, j) < magn(i1, j1) or magn(i, j) < magn(i2, j2) then

IN (i, j) = 0
else

IN (i, j) = magn(i, j)
end

end
Algorithm 2: Non-Maximum Suppression

2.4 Designing an Edge Detector

We have the following criteria for an optimal edge detector:

1. Good detection

An optimal detector will minimise the probability of false positives i.e.
“edges” caused by noise. They will also minimise false negatives, the case
in which true edges are missed
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2. Good localisation

Detected edges should be close to or at the same position as the true edges

3. Specificity

A detector should return only a single point per true edge, i.e. edges
should be sharp and not blurred over many pixels.

2.5 Canny Edge Detector

Canny came up with it, it isn’t a particularly shrewd model.
This is the most popular edge detector in computer vision.
Canny showed that the first derivative of a Gaussian well approximates the

operator that optimises a trade-off between signal-to-noise ratio and localisation.
The process of the Canny edge detector is as follows:

• Filter image using the derivative of Gaussian

• Calculate the gradient magnitude and direction

• Perform non-maximum suppression (See Section 2.3)

• Linking and thresholding using hysteresis thresholding

We apply the high threshold to initialise contours, we then trace these
contours until the magnitude falls below the low threshold.

2.5.1 Canny Characteristics

The Canny operator gives images with edges which are single pixel wide with
good continuation between adjacent pixels. It is one of the most widely used
edge detection operators and there are many sub-types. It is very sensitive to
parameters, requiring extensive tuning for different domains.

3 Binary Image Analysis

Binary images are black and white, silhouette images.
Advantages:

• They are easy to acquire/take

• They require low amount of space to store

• They are (relatively) simple to process

Disadvantages:

• They have limited utility

• They cannot generally capture 3D scenes

6



• Specialised equipment is required to capture silhouettes.

The basic steps of binary image analysis are as follows:

1. Convert the image into a binary format

This can be done by thresholding

2. Clean up the thresholded image

This is performed using morphological operators

3. Extact separate blobs

4. Describe the blobs with region properties

3.1 Converting to binary form

We do this by thresholding, this is where we take a greyscale image and convert
it to a binary mask.

We can use standard thresholding, hysteresis thresholding or a mask:
Where we have a set of values Z which define the intensity values which we

are interested in:

E(x, y) =

{
1 if ‖∇f(x, y)‖ ∈ Z
0 otherwise

3.2 Morphological operators

These are operators used to change the shape of the foreground regions via
intersection/ union operations between a scanning structuring element and a
binary image.

This is a useful operation to clean up the results from thresholding.
The basic operations used are Dilation and Erosion.

3.2.1 Dilation

This operation expands connected components, grows features and fills in holes
in the image. An example of what this operation does can be seen in Figure 3

At each position, if the current pixel is on i.e. is 1, then set all the output
pixels corresponding to structuring element to 1.

This operation can be seen in a stream of binary pixels in Figure 4. You
can see that the objects have become larger as gaps have been filled in. This
procedure can scale to 2D images through the use of 2D mask.
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Figure 3: Before and after Dilation operation

Figure 4: Dilation on a stream of binary pixels

3.2.2 Erosion

This operation erodes connected components, shrinks features and removes
bridges, branches and noise.

An example of what it does to the result of our Dilation operation can be
seen in Figure 5

To perform the erosion operation:
If every pixel under the structuring element is 1, then set the output pixel

corresponding to the current pixel to 1, see Figure 6. Notice that the object get
smaller.

3.3 Opening

Opening is the process of performing erosion and then dilation to a binary image.
This process removes small objects but keep the original shape.

3.4 Closing

Closing is the process of performing dilation followed by erosion to a binary
image. This fills in holes and keeps the original shape.
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Figure 5: Erosion Example

Figure 6: Erosion applied to binary pixel stream

3.5 Connectedness

How do we determine what pixels are connected to eachother when attempting
to filter out noise without removing object detail?

Connectedness is the process of defining which pixels are considered neigh-
bours.

3.5.1 4-Connected

This is the notion that a pixel is connected to others if it shares northerly,
easterly, southerly or westerly border with them.

3.5.2 8-Connected

This is an extension of 4-Connectedness, here a pixel is deemed connected to
all 8 of the pixels surrounding it, adding the diagonally connected pixels to the
4-Connected notion.

3.6 Region Properties

Given connected components, we can compute many simple features per blob
including:
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• Area, defined as the number of pixels in the region

• The centroid, the average x and y position of pixels in the region

• The bounding box, the minimum and maximum coordinates in both di-
rections.
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